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Abstract
We review the progress made in dynamic bulk critical behaviour in equilibrium
in the last 25 years since the review of Halperin and Hohenberg. We unify
the presentation of the theoretical background by restricting ourselves to the
field-theoretic renormalization group method. The main results obtained in the
different universality classes are presented. This contains the critical dynamics
near the gas–liquid transition in pure fluids (model H), the plait point and
consolute point in mixtures (model H′), the superfluid transition in 4He (model
F) and 4He–3He mixtures (model F′), the Curie point (model J) and Neel
point (model G) in Heisenberg magnets and the superconducting transition. In
comparison with experimental results, it became clear that in most cases one
has to consider apart from the universal asymptotic critical behaviour also the
non-universal effective behaviour. Either because it turned out to be inevitable
due to a small dynamical transient exponent inhibiting the system to reach
the asymptotics (e.g., at the superfluid transition) or because one is interested
in the region further away from the phase transition like in pure fluids and
mixtures at their gas–liquid or demixing transition. The calculation of the
critical dynamics is adequate in most cases only in two-loop order. We review
these results and present the solution to unreasonable features found for some
models. Thus, we consider model C where relaxational and diffusive dynamics
are coupled and the scaling properties and the limit to a purely relaxational
model (model A) have not been understood. In general for models where the
order parameter couples to other conserved densities time scale ratios between
the kinetic coefficients of the order parameter and the conserved densities play
an important role. Their fixed-point values and the approach to the fixed
point are changed considerably in two-loop order compared to their values
in one-loop order. These considerations are relevant for the explanation of
the dynamical critical shape functions of systems such as superfluid helium
(model F) and the isotropic antiferromagnet (model G). As far as possible,
the comparison of results obtained by the renormalization group theory with
numerical simulations has been made.

0305-4470/06/240207+107$30.00 © 2006 IOP Publishing Ltd Printed in the UK R207

http://dx.doi.org/10.1088/0305-4470/39/24/R01
mailto:reinhard.folk@jku.at
http://stacks.iop.org/JPhysA/39/R207


R208 Topical Review

PACS numbers: 05.10.Cc, 64.60.Ht

Contents

1. Introduction 209
2. Definition of models 213
3. General dynamic equations 214
4. Dynamic functional 217
5. Static functionals and correlation functions 218

5.1. Ginzburg–Landau–Wilson functional 218
5.2. Extended static functionals 220

6. Dynamic correlation and vertex functions 224
6.1. Relation between dynamic correlation and vertex functions 224
6.2. General structure of the dynamic vertex functions 225
6.3. Lowest order of the dynamic vertex functions 225
6.4. Simplifications of the structure in special models 226
6.5. Relation to experimentally measurable quantities 228

7. Renormalization and field-theoretic functions 230
7.1. Renormalization of the static parameters 231
7.2. Renormalization of the dynamic parameters 232
7.3. ζ -functions 238
7.4. β-functions and flow equations 239
7.5. Dynamic stability 246

8. Dynamic scaling and asymptotic exponents 247
8.1. Scaling of the dynamic correlation function 247
8.2. The static critical exponents 249
8.3. The dynamic critical exponent z 250
8.4. Dynamic exponent z of models without mode coupling terms 251
8.5. Dynamic exponent z of models with mode coupling terms 252

9. Model A (relaxational dynamics) 255
10. Models B and D (diffusive dynamics) 257
11. Model C and generalizations (model C′) 257

11.1. Model C∗/C and its ‘phase diagram’ 257
11.2. Flow of model C and effective dynamic exponent 260
11.3. Computer simulations 261
11.4. Models C∗′ and C′ 261
11.5. Effective behaviour of model C′ 263

12. Model E/E′ (planar ferromagnet) 264
12.1. Superfluid transition in 4He 264

13. Model F (superfluid transition in 4He) 266
13.1. Thermal conductivity 267

14. Model F′ (superfluid transition in 3He–4He mixtures) 269
14.1. Transport coefficients in mixtures 269
14.2. Singular thermal conductivity 273
14.3. Computer simulations 273

15. SSS model and DP model 274
15.1. SSS model 274
15.2. DP model 276



Topical Review R209

16. Model H (gas–liquid transition in fluids) 277
16.1. Asymptotic properties 277
16.2. Transport coefficients and effective Kawasaki amplitude 279
16.3. Light scattering 283
16.4. Computer simulations 284

17. Model H′ (gas–liquid and liquid–liquid transitions in binary mixtures) 285
17.1. Transport coefficients 286
17.2. Kawasaki amplitude 288

18. Models G and J (magnetic transitions in Heisenberg magnets) 289
18.1. Model J (isotropic ferromagnet) 290
18.2. Model G (isotropic antiferromagnet) 293

19. Critical dynamics in superconductors 295
20. Short remarks on other topics 296

20.1. Influence of disorder on critical dynamics 296
20.2. Critical dynamics near Lifshitz points, dipolar systems 297

21. Conclusion and outlook 297
Acknowledgments 298
Appendix A. Field-theoretic functions in two-loop order for different models 298

A.1. Models without a secondary density 298
A.2. Models with one secondary density 299
A.3. Models with two secondary densities 302

Appendix B. Notations 306
References 307

1. Introduction

Although the renormalization group theory explained dynamical critical phenomena in
principle when the classical review by Hohenberg and Halperin was written in 1977 [1],
a lot of problems remained open. Some of them emerged by looking closer at the phenomena
in the following years. Especially, the field-theoretic method in dynamics [2–5] turned out to
be fruitful and a strong method in calculating critical properties of measurable quantities. It is
the aim of this review to present the field-theoretic method and to give an overview of some
developments made in the years after 1977. However, this requires restrictions of the topics
treated and we mainly discuss the results for the classical set of models within the universality
classes defined in [1].

Critical behaviour near a second-order phase transition is usually connected with
singularities in static quantities—like the specific heat—or dynamic quantities—like the
thermal conductivity—which are described by power laws with universal exponents and
universal amplitude ratios. In the renormalization group theory, this special behaviour is
connected to the approach of a so-called fixed point stating that the system considered remains
invariant under length scale transformations and the correlation length diverges. At the fixed-
point asymptotic universal critical behaviour emerges. Being further away from the critical
point, one might describe the specific behaviour by linearizing about the fixed point leading to
universal transient exponents which describe the corrections to the power laws disappearing
when the critical point is approached. This picture has worked well for many critical systems
in statics but also in dynamics.

The consequence of that picture was the division of the models into different universality
classes characterized by the fixed point of the static and dynamic functionals. These functionals
define the asymptotic universal properties which are, e.g., values of exponents and amplitude
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ratios, shape functions of dynamical correlations and crossover functions. They may describe
the asymptotic critical behaviour in different regions of scaling variables. An example might
be the crossover from the hydrodynamic region where kξ < 1 (with k being the wave vector
modulus and ξ the correlation length) to the critical region where kξ > 1. It might also
describe the crossover between the critical behaviour of two fixed points where one of them
is unstable. The stability of a fixed point and the corrections to scaling were obtained by
linearization about the fixed point.

There were several reasons to go beyond that picture and to consider the whole flow to
the stable fixed point starting from some point further away in a region where non-universal
behaviour is expected. This flow might extend into the region where fluctuation effects are
small and the dependence of the physical quantities is analytical in the various parameters
such as temperature distance from the critical point Tc, the wave vector k or the frequency
ω. Such an extended description of the critical behaviour is accomplished by the so-called
non-asymptotic renormalization group theory.

One reason to consider the theory beyond its asymptotic formulation might be that at
least one transient exponent is so small and the approach to the fixed point so slow that the
experimental region is far outside that asymptotic region where the critical behaviour can
be described by the fixed-point properties. The most prominent example of that kind is the
critical dynamics of the superfluid transition at Tλ in 4He. The comparison of the thermal
conductivity agreed with predicted divergence by RG calculations. However, deviations from
the expected critical exponent could be found [6]. Subsequent highly precise measurements
were performed over a wide range of temperatures and pressures [7, 8] which quantified
the deviations from the results calculated within an asymptotic RG theory. The universal
amplitude of the second sound damping below Tλ was also far from the expected universal
value. In addition, the light scattering deviated considerably from scaling theory (see figure 7
in [1]). It was recognized later that the dynamic model describing the asymptotics of the
superfluid transition in dimension d = 3 (the OP has n = 2 components) lies in the d–n-
plane near the stability boundary where two dynamical fixed points change their stability
[9]. Near this boundary, a small dynamical transient exponent exists with the consequence
that the experimental region around the transition temperature Tλ is outside the asymptotic
region although one can approach the transition temperature Tλ closer than in any other
system. Thus only in a non-asymptotic field-theoretic RG theory [10, 11] the temperature and
pressure dependences of the second sound damping amplitude ratio R2 below Tλ and of the
thermal conductivity amplitude ratio Rλ above Tλ as well as the light scattering [12] can be
described.

Another reason is that often the experimentally accessible region is further away from
the transition and therefore outside the asymptotic regime. Non-universal behaviour might be
observed in this region in different manners:

• Power laws are applicable to the measured quantity but with effective exponents deviating
from the universal exponents.

• Enhancements of finite quantities at the phase transition induced by fluctuations
(enhancement) are observed leading to deviations from the regular behaviour.

Therefore, it is of interest to develop a theory which includes beside the asymptotic properties
also the crossover to the regular behaviour far away from the transition, where fluctuations
are negligible (background region). One might also use the known regular dependence of
the background values of physical quantities (e.g., the transport coefficients) on physical
parameters (such as pressure or concentration) to predict the non-asymptotic non-universal
(effective) critical behaviour.
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In order to give an example let us consider mixtures of two fluids. Binary liquid mixtures
belong to the universality class of pure fluids at the liquid vapour critical point although the
order parameter (OP) may be different (two extreme cases are the plait point and the consolute
point in a mixture where the entropy density or the concentration is the OP respectively).
The dynamical universality class for a pure fluid is defined by the equations of motion for
a conserved OP (the entropy density) and the transverse momentum current describing the
shear mode. These two equations are coupled by reversible terms (mode coupling terms).
The thermal conductivity and the shear viscosity diverge with an asymptotic power law at the
critical point. In binary liquid mixtures, the dynamics is described by two conserved densities
corresponding to the heat mode and the mass diffusion mode. Both equations coupled to the
shear mode-by-mode coupling terms but are also coupled among themselves by a diffusive
term (the thermal diffusion ratio). Due to this diffusive coupling, the measurable thermal
conductivity (at vanishing mass current) is finite at these second-order phase transitions but
in some cases a considerable enhancement might be visible (see, for example, the case of
an equimolar methane–ethane mixture [13] or 3He–4He mixtures [14]). This behaviour can
quantitatively be described by the non-asymptotic field-theoretic renormalization group theory
(RG) [15, 16]. Moreover, in changing the concentration of the mixture to the limit of one of the
pure constituents one recovers a divergent thermal conductivity. In the mixture, the asymptotic
critical behaviour of the mass diffusion is the same as the asymptotic critical behaviour of
thermal diffusion in the pure fluid while the critical behaviour of the shear viscosity is the same
in mixtures as in pure fluids. Thus, both systems belong to the same dynamic universality
class but in order to understand the complete dynamical behaviour it might be necessary to
extend the model within a dynamic universality class.

In mixtures of 3He–4He near the superfluid transition, one also has an enhanced but finite
thermal conductivity (at vanishing mass current). With RG theory, one can calculate this
concentration-dependent enhancement and the crossover to the divergence in the limit of zero
concentration of 3He in 4He [17].

It is an interesting coincidence that in the case of 4He where one can approach the
phase transition closer than in any other system with a second-order phase transition the slow
dynamic transient does not allow to reach the asymptotic regions (see the remarks in [18] in
the section on the dynamics of the superfluid transition). But independent of the presence of
a small transient as at the superfluid transition such a non-asymptotic theory has been asked
for other systems too [19]. At the gas–liquid phase transition, the approach of the asymptotic
regime is inhibited on earth by gravitation, which couples to the OP. In solid-state systems,
other disturbances (e.g., defects) inhibit reaching such small relative temperature distances as
in 4He. Thus also for these systems it is worthwhile to apply the non-asymptotic theory in
order to cover the crossover to the background behaviour.

After the time of the review by Hohenberg and Halperin theory and experiment as well
as computer simulations have reached a level such that accurate quantitative comparison
of experiment and/or simulations with theory is possible. Surprisingly enough some open
problems within dynamical critical theory have been solved only recently although they have
been known since 1970s.

• The scaling behaviour of a simple relaxational model coupled statically to a conserved
density (model C) [20, 21] was not understood. There seemed to exist regions in the
plane of spatial dimension d and number of components n of the OP where the concept
of dynamic scaling could not be applied. Later for the special case of n = 2, a result
different from [21] for the field-theoretic function was published [22], which however
did not lead to model A when the conserved density is much faster than the OP. This has
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been resolved only recently after (i) a correct field-theoretic two-loop calculation [23] and
(ii) by observing that an ε-expansion is restricted to n < 2.

• Sasvari, Schwabl and Szepfalusy set up a model, where an n-component OP couples via
reversible terms to n(n−1)/2 conserved densities (SSS model) [24]. This model reduces
to the planar ferromagnet for n = 2 (model E) and to the isotropic antiferromagnet for
n = 3 (model G). The dynamic scaling properties in the d–n-plane turned out to be not
well defined [25]. An unexpected region in the d–n-plane has been found—using the
ε-expansion—where two dynamic fixed points are stable. Avoiding the ε-expansion of
logarithmic terms in the fixed-point equation, the overlap of the stability regions of the
two dynamic fixed points disappears.

• The critical dynamics in Heisenberg magnets was also not so well understood. The
dynamical critical exponents could be exactly expressed for the ferromagnet as well as for
the antiferromagnet. Besides the dynamical critical exponent other important quantities
like the dynamic structure factor at Tc were calculated by RG but the results for the
ferromagnet were in conflict. In [26] the shape function for the isotropic ferromagnet had
its peak at zero frequency whereas in [27] it had a peak at a finite frequency. Later, in
[28], this conflict was resolved in favour of the dynamic shape function with its peak at
zero frequency [26]. These calculations were then extended to temperatures above Tc in
[29] and successfully applied in neutron scattering experiments.

• For antiferromagnets, the structure factor at TN remained in disagreement with
measurements. RG calculations in lowest loop order [30, 31] did not reproduce the
quasielastic component found in RbMnF2 [32] and later confirmed in [33].

Dynamical critical effects show up also in other dynamical quantities than those described
by the model equations of the universality class. An example is the critical behaviour of the
sound mode. The sound mode couples to the original equations defining the universality class.
The critical non-asymptotic behaviour of the frequency dependence of the sound velocity or
the sound attenuation can then be calculated using non-universal dynamical parameters already
known (see the calculations in pure fluids [34], mixtures [16] or at the superfluid transition
[35]). However, the criticality of the sound mode will be mentioned only shortly in this
review.

Several other important topics cannot be treated in this review or topics treated here have
also been reviewed in other context. We give a short list of some of these: dynamics near
multicritical points were reviewed in [36], ageing properties of critical systems in [37], the
field theory approach to percolation processes in [38], the critical dynamics of magnets in [41]
and the universal critical point amplitude relations in [19]. We do not consider the critical
dynamics in disordered systems, in finite systems (see, e.g., [39] and references therein),
dipolar systems or dynamics on surfaces (see, e.g., [40] and references therein), dynamics on
networks or percolating clusters or reaction–diffusion problems [42]. For an application of
field theory and RG theory to turbulence see [43].

Critical dynamics has also been treated in the books of Vasil’ev [44] and an overview on
fluid systems have been presented by Anisimov [45] and Onuki [46]. Useful information can
also be found in the draft of the textbook of Täuber [47].

The review is organized in the following way: (i) after an overview of the dynamical
models (section 2) the field-theoretic formalism is presented including the essentials of the
statics and the definition and structure of the dynamical vertex and correlation functions (up
to section 6). Then, the renormalization is introduced in section 7 and the corresponding
field-theoretic functions are defined. The possible fixed points and the consequences for
the dynamical critical exponents are exploited (up to section 8.3). (ii) In the following,
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the different models (sections 9–18) and the results obtained are discussed and compared
with experiments and computer simulations. (iii) Field-theoretic results are cumulated in
appendix A for the dynamic field-theoretic functions (mostly in two-loop order).

2. Definition of models

Near a second-order phase transition the correlation length diverges and the physical system
loses its typical length scale. Scale invariance follows and using the renormalization group
theory the specific critical behaviour of physical quantities near such a phase transition can be
determined [48]. In statics singular behaviour, like the divergence of the specific heat or of
the susceptibility, is observed in the form of a power law. The set of all universal quantities
for a system, like the exponents of these power laws, the scaling functions written as functions
of scaling variables, etc define the static universality classes although the systems might be
microscopically quite different. These static universality classes are characterized by quite
general properties of the systems such as spatial dimension, number of components of the
OP (if it is a scalar, a two-component vector or a three-dimensional vector), its symmetry
properties, either isotropic or of cubic symmetry and the range of interaction (for a review
see [49]).

These static universality classes subdivide into several dynamic universality classes.
In dynamics, one also finds singular behaviour and power laws, e.g., in the kinetic
coefficients (KCs) of the specific dynamic equations. The main effect near the phase
transition is the critical slowing down, i.e., the increase of the relaxation time in which
the system reaches equilibrium. Due to the different behaviour of the relaxation times of
the relevant dynamical densities, these universality classes further divide into dynamical
subclasses characterized by the critical dynamic exponents appearing in the dynamical
models. These dynamical universality classes have been categorized by capital letters
in the review of Hohenberg and Halperin. They are distinguished by the structure of
the dynamical equations necessary to describe the relevant slow variables in the physical
system. These slow variables are (i) the OP itself because of critical slowing down and (ii)
other densities which obey a continuity equation. Thus, we have to consider the following
items:

• Is the OP conserved or non-conserved?
• Does the OP couple to other conserved densities? What is the tensor character of these

secondary densities? For example, scalars, vectors or tensors.
• How does the OP couple to the conserved densities? Statically and/or dynamically, e.g.,

via irreversible and/or mode coupling terms.

An overview may be found in table 1 where we list the densities involved in the critical
dynamics of the different models. More details are given in the accompanying sections where
several models are presented.

Symmetry properties determine the possible irreversible couplings as well as the mode
couplings of the equations of motion of the different densities. This is important for the
asymptotic critical dynamics as well as for the non-asymptotic region further away from Tc

and will be discussed in the corresponding sections of the different models.
Besides the arrangement of the dynamical systems in universality classes in table 1 (the

unprimed classes), the non-asymptotic properties have become more and more important. In
consequence, it is necessary to distinguish between systems within one universality class if
non-universal quantities become important (see the primed classes in table 1).
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Table 1. Different dynamic models considered with their name, the reference where the model
was set up (column reference) and some examples for which the models apply (last column). In
columns 2–6 several features of the models are presented. Column 2 indicates if the order parameter
(OP) is conserved (c) or non-conserved (nc). Column 3 gives the number of secondary densities
(SD) together with their tensor character where the abbreviations s for scalar, v for vector or a
component of a vector and t for a tensor of second rank are used. Columns 4–6 give information
about the static and dynamic couplings appearing in the models. sc indicates the number of static
couplings, ic the number of irreversible couplings (kinetic cross coefficient) and mc the number of
reversible mode couplings.

Model OP SD sc ic mc Reference System

A nc 0 0 0 0 [50] Relaxation
B c 0 0 0 0 Diffusion
C nc 1s 1 0 0 [20] Relaxation/diffusion, structural PT
C′ nc 2s 1 1 0 [20] Relaxation/diffusion, structural PT
D c 1s 1 0 0 [51] Global conservation
E nc 1v 0 0 1 [52] Planar magnet hz = 0
E′ n 2v 0 1 2 [52] Planar magnet hz = 0
F nc 1s 1 0 1 [52] Planar magnet hz �= 0

Superfluid 4He
F′ nc 2s 1 1 2 [53] Superfluid 3He–4He mixture
G nc 1v 0 0 1 [20] Heisenberg antiferromagnet
H c 1v 0 0 1 [52] Gas/liquid
H′ c 1v + 1s 1 1 1 [52] Binary mixture
J c 0 0 0 1 [54] Heisenberg ferromagnet
DP nc 1v 0 0 1 [4] Heisenberg antiferromagnet
SSS nc 1t 0 0 1 [24] Structural PT

3. General dynamic equations

Due to the critical slowing down, the dynamics of a phase transition of second order
is determined by slowly (compared to the time scale of microscopic processes) varying
dynamic variables {ai}, which are related to macroscopic observable quantities. Based on the
considerations made by Green [55], where stochastic equations for a set of slow variables have
been extracted from microscopic molecular variables by averaging over phase space volumes,
Zwanzig [56] developed a projector method, which forms the cornerstone for equations of
critical dynamics. In his approach, the slow variables define a subspace in phase space. The
projector separates the Liouville equations for the microscopic variables into a part which is
‘parallel’ to the subspace of the slow variables and a part which is ‘perpendicular’. The latter
one describes the influence of the fast microscopic variables acting like a noise onto the slow
variables. Replacing it by a stochastic force turns the former deterministic Liouville equation
into a stochastic equation. The projected equation can be further separated into a part which
is reversible in time and a dissipative part. Neglecting memory effects, one finally obtains the
following Langevin-type equations for the dynamic variables {ai} with the static functional H
and the noise θi

∂ai

∂t
= vi({ak}) −

∑
j

Lij

δH({ak})
δa+

j

+ θi . (1)

The first term on the right-hand side in the above equation is the reversible part given by

vi({ak}) =
∑

j

[
Qij

δH{ak})
δa+

j

− δQij

δa+
j

]
. (2)
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The functions Qij are determined by the Poisson brackets

Qij = kBT
{
ai, a

+
k

}
. (3)

We want to emphasize that these Poisson brackets are not the usual microscopic brackets
derived in mechanics. They represent generalized Poisson brackets of macroscopic
observables. Basically, there are two methods to obtain such generalized Poisson brackets. The
first one is to transform the commutators in quantum mechanics into classical Poisson brackets
by using the correspondence principle. This method works only for macroscopic observables
which have a microscopic counterpart (magnetization spin for example). Macroscopic
densities like the entropy density for instance do not correspond to a microscopic expression.
For such quantities, the second method must be used where symmetry operations valid in a
system and their corresponding group generators are used to obtain Poisson brackets. Only
Poisson brackets which contain at least one group generator may be different from zero. All
other Poisson brackets are zero. Considering as an example a hydrodynamic system with the
entropy density, the mass density and the momentum current as macroscopic observables, the
momentum current is the generator of the translation operation under which the system has to
be invariant. Thus, the Poisson brackets between different momentum current components and
a momentum current component and the entropy or mass density are finite, while the Poisson
bracket between mass density and entropy density is zero. More details to the definition of
generalized Poisson brackets can be found in [57].

The second term in (1) is the dissipative part. The coefficients Lij are related to the KCs.
The way how these coefficients are related to the Onsager coefficients is determined by a
fundamental property of the corresponding dynamic variables.

(i) Non-conserved densities. In this case, the total amount of the macroscopic densities changes
with time which means

d

dt

∫
ddx ai(x, t) < 0. (4)

This always happens when a finite amount of the dynamic quantity flows into microscopic
degrees of freedom, which are not covered by the macroscopic set of dynamic variables. A
continuous loss in the total amount of the considered quantity is the consequence usually
denoted as relaxation described by the equation

∂ai

∂t
= −

∑
j


ij aj . (5)

The coefficients 
ij then represent the relaxation coefficients. In order to connect the relaxation
coefficient with the coefficients Lij from (1), we have to distinguish between the two cases of
either real or complex dynamic variables.

Real-valued dynamic variables. The static functional H is in the simplest case of Gaussian
form. For real dynamic variables this is

H = 1

2

∑
k

∫
ddx a2

k (6)

and (5) can be rewritten as

∂ai

∂t
= −

∑
j


ij

δH({ak})
δaj

. (7)
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Thus, we simply may identify Lij = 
ij in this case.

Complex-valued dynamic variables. For complex dynamic variables, the Gaussian static
functional is

H = 1

2

∑
k

∫
ddx a+

k ak = 1

2

∑
k

∫
ddx
(
a′2

k + a′′2
k

)
. (8)

Usually, ak and a+
k are considered as dynamic variables instead of the real and imaginary parts

a′
k and a′′

k . Equation (5) can then be rewritten as

∂ai

∂t
= −

∑
j

2
ij

δH({ak})
δa+

j

. (9)

Now, we may identify Lij = 2
ij .

(ii) Conserved densities. The total amount of conserved densities does not change in time,
thus we have

d

dt

∫
ddx ai(x, t) = 0. (10)

In the case of local conservation, any alteration of ai in time in an arbitrary volume element
causes a current through the surrounding surface into the neighbouring volume elements and
Fick’s law is valid. This is expressed by the continuity equation

∂ai

∂t
+ �∇ · �J ai

= 0, (11)

where �J ai
is the current corresponding to ai . Because we are only interested in the long time

behaviour over large scales, we may assume that the current is proportional to the gradient of
the densities that is

�J ai
= −

∑
j


ij
�∇aj (12)

which is called Fick’s law. Inserting into (11) leads to

∂ai

∂t
=
∑

j


ij∇2aj . (13)

The dissipation of conserved quantities is determined by diffusion. In this case, the coefficients
in (1) are Lij = −
ij∇2 where 
ij are now diffusion coefficients. Conserved dynamic
variables are always real in the considered models regardless if they represent the OP or any
secondary densities. Therefore, it is not necessary to consider complex dynamic variables in
this case.

H is related to the equilibrium phase space density in the subspace of slow variables and
determines a free energy. Usually, a static functional which is capable to describe the static
critical behaviour of the system is inserted. Details will be given in a subsequent section.

The functions θi(x, t) have their origin in the part of the Liouville equations which
is ‘perpendicular’ to the subspace of the slow variables. As mentioned earlier, they will
be replaced by stochastic forces. Because memory effects have been neglected in (1), the
stochastic forces θi(x, t) are determined by a Markovian process. The coefficients Lij fulfil
Einstein relations

〈θi(x, t)θj (x
′, t ′)〉 = 2Lij δ(x − x ′)δ(t − t ′). (14)

Lij has to be inserted according to (i) or (ii) in the discussion above. Note that in (14), and in
the following discussions also, possible complex variables and their adjoint are covered by the



Topical Review R217

indices i and j considering them as individual variables. Therefore, we have written general
〈θi θj 〉 correlations instead of only

〈
θi θ

+
i

〉
correlations which are different from zero in such a

case. This implies that Lij has the substructure

[L(ai)] =
(

0 2
i

2
i 0

)
(15)

for each pair of ai and ai+1 = a+
i .

Under non-equilibrium conditions, several requirements valid in equilibrium dynamics
(Einstein relations, integrability for the reversible forces and detailed balance) are not fulfilled.
Thus, the non-equilibrium dynamics is not limited by the fluctuation dissipation theorem,
which makes possible the separation of static and dynamic properties (for further discussion
see, e.g., [58]).

4. Dynamic functional

In order to obtain a dynamic functional which is suitable to perform a loop expansion, we
follow the approach of Bausch, Janssen and Wagner [3]. The Einstein relations (14) imply a
probability density

W̄
({θk}

) ∼ exp

−1

4

∫
dt dx

∑
i,j

θi(x, t)[L−1]ij θj (x, t)

 . (16)

A path probability density for the stochastic variables ai can be achieved by

W({ak}) d({ak}) = W̄({θk}) d({θk}), (17)

which may be defined as

W({ak}) ∼ exp(−G({ak})). (18)

The functional G can be found by inserting the dynamic equations (1) into (16). Introducing

Vi({ak}) ≡ vi({ak}) −
∑

j

Lij

δH({ak})
δa+

j

, (19)

the dynamic equations can be shortly written as ȧi = Vi({ak}) + θi . Inserting into (16) leads to

G({ak}) = 1

4

∫
dt dx

[∑
i,j

(ȧi − Vi({ak}))[L−1]ij (ȧj − Vj ({ak})) + 2
∑

i

δVi({ak})
δai

]
. (20)

The last term in (20) arises from the functional Jacobian. The drawback of the above dynamic
functional is that the dynamic variables may appear in high powers especially in V 2 making
a perturbation expansion very difficult. The higher the powers of the dynamic variables, the
higher the loop order necessary to obtain nontrivial results. This can be avoided by introducing
auxiliary variables {ãk} and performing a Gaussian transformation. The probability density
(18) is related via

W({ak}) =
∫

d({iãk})W̃({ak}, {ãk}) (21)

to a probability density

W̃({ak}, {ãk}) ∼ exp(−J ({ak}, {ãk})), (22)

which is now determined by a ‘linearized’ dynamic functional

J ({ak}, {ãk}) =
∫

dt dx

[
−
∑
i,j

ãiLij ãj +
∑

i

ã+
i (ȧi − Vi({ak})) +

1

2

∑
i

δVi({ak})
δai

]
. (23)
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Now the powers of {ak} have been reduced at the expense of doubling the number of dynamic
variables. Nevertheless, J is a dynamic functional suitable to perform a loop expansion.

5. Static functionals and correlation functions

5.1. Ginzburg–Landau–Wilson functional

All models considered in this review have in common that their static critical behaviour is
completely covered by the Ginzburg–Landau–Wilson (GLW) functional (an exception will be
the static functional for the superconductor), which is also known as φ4-model in the literature
[59–61]. It represents a free energy functional which is expanded in powers of an order
parameter (OP) up to fourth order, and its gradient up to quadratic order which is sufficient
for the description of the normal critical point in a system. For multicritical behaviour, the
expansion has to be extended either in the powers of the OP (sixth order for tricritical behaviour
for instance) or in the powers of the gradient terms (fourth order for Lifshitz points). Further
we will restrict ourselves to isotropic systems in the following, thus the functional is of the
form

HGLW =
∫

ddx

{
1

2
r̊ �ϕ+

0 �ϕ0 +
1

2

d∑
i=1

∇i �ϕ+
0 ∇i �ϕ0 +

ů

4!

(�ϕ+
0 �ϕ0
)2}

. (24)

The parameter r̊ = a
(
T −T (0)

c

)
is proportional to the temperature distance to the critical point

which is described by the mean field critical temperature T (0)
c . The fourth-order coupling

ů must be positive otherwise a sixth-order term would be necessary leading to tricritical
behaviour or a first-order transition. The OP �ϕ0 has been written as a complex vector (�ϕ+

0
is its adjoint vector) representing the most general structure. The actual structure of the OP
differs in the dynamic models dependent on the physical quantity which represents the OP in
this system. It may range from a simple real scalar function �ϕ0 ≡ φ0(x), as it is at the gas–
liquid critical point in liquids and liquid mixtures (model H, H′) and real n-component vectors
�ϕ0 ≡ �φ0(x) usually appearing in magnetic systems like the ferromagnet (model J, SSS model)
or the antiferromagnet (model G), to scalar complex functions �ϕ0 ≡ ψ0(x) = ψ ′

0(x) + iψ ′′
0 (x)

necessary at the superfluid transition in 4He (model E, F) and 3He–4He mixtures (model E′, F′).
In the DP model and in the purely dissipative models (model A, B, C), even n/2-component
complex vectors �ϕ0 ≡ �ψ0(x) = �ψ ′

0(x) + i �ψ ′′
0 (x) may appear.

Correlation functions within statics are defined as〈
ϕi1(x1) · · · ϕir (xr)

〉 = 1

N

∫
D(�ϕ)ϕi1(x1) . . . , ϕir (xr) e−HGLW (25)

with N = ∫ D(�ϕ) exp{−HGLW} as suitable normalization constant and
∫
D(�ϕ) the functional

integral over all OP components. In the case of a complex OP, of course only correlation
functions containing an equal number of ϕi and ϕ+

i are different from zero. From the correlation
functions, usually the cumulants are introduced as〈
ϕi1ϕi2

〉
c
= 〈ϕi1ϕi2

〉− 〈ϕi1

〉〈
ϕi2

〉
, (26)〈

ϕi1ϕi2ϕi3

〉
c
= 〈ϕi1ϕi2ϕi3

〉− 〈ϕi1ϕi2

〉
c

〈
ϕi3

〉− 〈ϕi1ϕi3

〉
c

〈
ϕi2

〉− 〈ϕi2ϕi3

〉
c

〈
ϕi1

〉− 〈ϕi1

〉〈
ϕi2

〉〈
ϕi3

〉
,

... (27)

The cumulant of a correlation is obtained by subtracting all possible lower cumulants. In a
loop expansion, these cumulants are obtained by collecting all graphical contributions which
are connected at least with one line, therefore they are also called ‘connected Greens functions’



Topical Review R219

in several topics of physics. Of special interest are the two-point functions in (26) because
they are related to thermodynamic derivatives such as specific heats or susceptibilities. The
GLW functional belongs to the class of systems with isotropic symmetry, thus the cumulants
of all OP components are related to the same function

〈
ϕ0(x1)ϕ

+
0 (x2)

〉
c

[62] in the disordered
phase (T > Tc) and we may write〈

ϕi1(x1)ϕ
+
i2
(x2)

〉
c
= 〈ϕ0(x1)ϕ

+
0 (x2)

〉
c
δi1i2 . (28)

The Fourier-transformed OP cumulant is defined as〈
ϕ0(k1)ϕ

+
0 (k2)

〉
c
=
∫

dx1

∫
dx2
〈
ϕ0(x1)ϕ

+
0 (x2)

〉
c

exp(−(ik1x1 + ik2x2)). (29)

Due to the translation invariance of the cumulant
〈
ϕ0(x1)ϕ

+
0 (x2)

〉
c

= 〈
ϕ0(x1 − x2)ϕ

+
0 (0)

〉
c

the
Fourier-transformed cumulant can be written as〈

ϕ0(k1)ϕ
+
0 (k2)

〉
c
= C̊

(s)
ϕϕ+(r̊, ů, k1)δ(k1 + k2), (30)

which is achieved by shifting the first integral in (29) and using an appropriate representation
of the Dirac delta function δ(k). The Fourier-transformed two-point OP cumulant is related
to static OP vertex functions �̊ϕϕ+ by

�̊ϕϕ+(r̊, ů, k) = 1

C̊
(s)
ϕϕ+(r̊, ů, k)

. (31)

The vertex function is determined by a subset of all graphical contributions appearing in the
cumulant. It only contains ‘one-particle irreducible’ graphs, which have the property that they
do not decompose into two graphs of lower degree if one line is cut. The OP vertex function will
be usually calculated explicitly in loop expansion. A comprehensive survey over the Feynman
theory of graphs used in the field of critical phenomena, presenting the rules for construction
and calculation of graphs, can be found in [59]. In the above relations, we have considered the
general complex case. The static functions calculated with an n/2-component complex OP
are equal to the corresponding functions calculated with an n-component real OP apart from
an overall factor. For two-point functions this means

〈
ϕ0ϕ

+
0

〉
c
= 〈ϕ′

0ϕ
′
0〉c + 〈ϕ′′

0 ϕ′′
0 〉c = 2〈ϕ′

0ϕ
′
0〉c

because the GLW functional is real and therefore symmetric in ϕ′
0 and ϕ′′

0 . The vertex functions
of a complex and a real system are related by

�̊ϕϕ+(r̊, ů, k) = 1
2 �̊φφ(r̊, ů, k). (32)

In order to obtain vertex functions which are (i) finite at d < 4 also at infinite cut-off and
(ii) resummable although non-convergent when considered as power series of ů, the following
steps have to be performed [66].

• Tc-shift. Critical fluctuations induce a shift in the critical temperature Tc compared to
the critical temperature T (0)

c of the mean field theory. At the critical temperature, the
two-point vertex function, which is an inverse OP susceptibility, has to fulfil

�̊ϕϕ+(0, ů, 0) = 0. (33)

An examination of the loop expanded expression of the vertex function reveals that at
r̊ = 0 and k = 0 strongly singular contributions remain. Their origin lies in a Tc-shift
r̊c which is not expandable in integer powers of ů. The Tc-shift is determined by the
condition

�̊ϕϕ+(r̊c, ů, 0) = 0, (34)

a function r̊c(ů) can be generated in every order of loop expansion, which is divergent for
any d > 2. From dimensional arguments, one obtains [63]

r̊c = ů2/εS(ε). (35)
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S(ε) is a dimensionless function with dimensional poles at ε = 2/l (l = 2, 3, 4, . . .) The
vertex function can now be rearranged internally by introducing the parameter r̊ − r̊c in
all orders of perturbation expansion

�̊ϕϕ+(r̊, ů, k) = ˚̃�ϕϕ+(r̊ − r̊c, ů, k) with r̊ − r̊c ∼ T − Tc. (36)

In the rearranged function ˚̃�ϕϕ+(r̊ − r̊ců, k), all singularities originating from the Tc-shift
are collected in r̊c(ů).

• Correlation length ξ . Within the GLW model the correlation length is defined as

ξ 2(r̊ − r̊c, ů) = ∂ ln ˚̃�ϕϕ+(r̊ − r̊c, ů, k)

∂k2

∣∣∣∣∣
k=0

, (37)

as a function of the GLW parameters. The definition (37) will be inverted obtaining

a function [r̊ − r̊c](ξ−2, ů) order by order. Inserting into ˚̃�ϕϕ+(r̊ − r̊c, ů, k) leads to a
vertex function �̊

(s)
ϕϕ+(ξ−2, ů, k) having an expansion in integer power of ů which may be

resummable [64].

This approach has been applied in our calculations to all static and dynamic vertex
functions necessary for the renormalization or the calculation of physical quantities in the
following and will not be mentioned further. The advantage in using the above rearrangements
is on the one hand a simplification of the expressions because only the contributions containing
critical singularities have to be calculated explicitly, and on the other hand that expressions
are obtained which are ready for applying resummation methods.

An accurate comparison in statics of the GLW model using Borel-summed expressions
for the physical quantities and the flow with experimental data at the liquid–vapour critical
point of 3He has been performed in [67] using different theoretical approaches of [65]
and [66].

5.2. Extended static functionals

Although the GLW functional together with the introduction of a suitable OP is sufficient
to obtain the asymptotic critical behaviour, especially the universal exponents and amplitude
ratios, it is sometimes necessary to extend this functional with secondary densities. The
reason for this step may be either that one is interested in non-asymptotic behaviour in
temperature regions where the so-called ‘irrelevant’ quantities, which do not influence the
critical behaviour in the asymptotic region, are not negligible. Or considering the critical
behaviour in dynamics, when the critical behaviour of diffusion or relaxation coefficients is
related to correlation functions of other densities than the OP. The static functional consists in
such a case of a part which is of GLW form (but with the parameters τ̊ and ˚̃u) as

Hϕ =
∫

ddx

{
1

2
τ̊ �ϕ+

0 �ϕ0 +
1

2

d∑
i=1

∇i �ϕ+
0 ∇i �ϕ0 +

˚̃u

4!

(�ϕ+
0 �ϕ0
)2}

(38)

and a part which contains secondary densities. It depends on the actual system how many
secondary densities have to be considered which couple to the OP. But they all have in common
that the secondary densities appear only up to quadratic order otherwise they would influence
the critical asymptotic behaviour of the system. Systems like 4He at the superfluid transition
(model F) or liquid mixtures at the gas–liquid critical point (plait point) and also at the liquid
demixing point (consolute point) both described by model H′ need a simple scalar function
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q0(x) as a secondary density which represents the entropy density or the concentration. In
these cases, we have to add the functional

H(1s)
m =

∫
ddx

{
1

2
aqq

2
0 +

1

2
γ̊qq0 �ϕ+

0 �ϕ0 − h̊qq0

}
(39)

to (38) where h̊q denotes the conjugate field to q0 and is chosen in such a way that the
expectation value of q0 is zero. The constant parameter aq is related to the background value
of a thermodynamic derivative like an inverse specific heat or some kind of susceptibility.
The parameter γ̊q is the static coupling between OP and secondary density. Scalar secondary
densities representing entropy, mass, energy densities or concentrations are invariant under
time-reversal and contribute according to (39) to the static functional. Because aq is only
a trivial parameter, it will be eliminated usually by rescaling the secondary density and the
corresponding parameters. Introducing rescaled secondary densities m0 = a

1/2
q q0, one obtains

H(1s)
m =

∫
ddx

{
1

2
m2

0 +
1

2
γ̊ m0 �ϕ+

0 �ϕ0 − h̊m0

}
(40)

with rescaled parameters γ̊ = a
−1/2
q γ̊q and h̊ = a

−1/2
q h̊q . Explicit calculations and especially

calculations of universal exponents or amplitude ratios are usually performed with (40). But
for comparison with experimental quantities in the non-asymptotic region, one has to keep in
mind that the original functional is (39) and aq is related to an experimental quantity.

In systems where the secondary density is either related to a vector �m0(x), for instance
the magnetization vector in the antiferromagnet (model G), or represents a component of a
magnetization vector, for instance in the planar ferromagnet (model E), couplings to the OP
cannot exist. This follows from the time-reversal invariance of the static functional. If the time
and all external magnetic fields are reversed, the functional (38) plus (40) has to be invariant.
For a magnetization vector, or a component of it, the term with the OP coupling γ̊ changes
its sign because the magnetization changes sign with reversed magnetic field. Thus, in such
systems the secondary density part of the static functional is simply

H(1v)
m =

∫
ddx

1

2
m2

0. (41)

The same is true for the mass current j0(x) changing the sign when the time is reversed.
Systems like liquids at the critical point (model H) as well as liquid mixtures at the plait point
and the consolute point (model H′) need the mass current in order to describe the critical
behaviour of the shear viscosity. Thus, one has to add

Hj =
∫

ddx
1

2
j 2

0 (42)

to the static functional. Analogously to (39) and (40), we have already given the rescaled
functionals in (41) and (42).

In cases where more than one scalar secondary density is necessary, for instance in
3He–4He mixtures at the superfluid transition (model F′) where the entropy density and the
concentration are necessary secondary densities, the situation gets somewhat more complex.
The generalization of (39) to several secondary densities is

H(Ms)
m =

∫
ddx

{
1

2
q0 · A · q0 +

1

2
γ̊q · q0 �ϕ+

0 �ϕ0 − h̊q · q0

}
, (43)
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where · denotes the dot product and the M scalar secondary densities qi0(x) are written as a
column vector

q0(x) =

 q10(x)

...

qM0(x)

 . (44)

The matrix

A =

a11 · · · a1M

...
...

aM1 · · · aMM

 (45)

of constant coefficients is related to thermodynamic derivatives taken at temperatures outside
the critical region, which is usually denoted as background region. The static couplings γ̊q

and the external fields h̊q are

γ̊q =

γ̊q1

...

γ̊qM

 , h̊q =

 h̊q1

...

h̊qM

 . (46)

The systematic derivation of a functional like (43) and the identification of the parameters
with thermodynamic quantities have been outlined in detail for several systems. At the
λ-transition in 3He–4He mixtures, a thermodynamic identification of the coefficients of A
has been presented in [68] and [69]. Considering the critical behaviour of first sound in
4He at the λ-transition, an extended dynamical model including the mass density as a second
secondary density beside the entropy density is necessary. This demands an extended static
functional of type (43) with two secondary densities. The identification of the parameters
with thermodynamic derivatives has been presented in [35]. And at least a comprehensive
derivation of an extended static functional and the connection of its parameters to experimental
quantities for the gas/liquid transition and the liquid/liquid transition in binary fluid mixtures
has been presented in [70]. In order to avoid a matrix renormalization scheme for the secondary
densities, which would be forced by the static functional (43), a transformation representing an
‘orthogonalization’ in some sense can be introduced. Independent of the number of secondary
densities, it is always possible to introduce transformed secondary densities m0 = M · q0
where M is an orthogonal transformation matrix (M−1 = M T ). The transformation has
the properties that (i) the matrix A will be diagonalized and (ii) only one secondary density
remains coupled to the OP and the rest is simply Gaussian. The general structure of such
transformations has been presented in [35, 71] for M = 2. After a subsequent rescaling of the
transformed secondary densities with the eigenvalues of A, one ends up with the functional

H(Ms)
m =

∫
ddx

{
1

2
m0 · m0 +

1

2
γ̊ mM0 �ϕ+

0 �ϕ0 − h̊mM0

}
. (47)

In the above expression only the last secondary density mM0 couples with γ̊ to the OP. All
other secondary densities are simply Gaussian.

In the case of vector quantities, the extension of (41) to N secondary densities is evident.
Thus, in general the extended static functional of a system with M scalar secondary densities,
N vector or vector component secondary densities, and the mass current is of the form

H = Hϕ + H(Ms)
m + H(Nv)

m + Hj . (48)
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Accordingly correlation functions are defined as

〈a1(x1) · · · ar(xr)〉 = 1

N ′

∫
D({aj })a1(x1) · · · ar(xr) e−H (49)

with the normalization constant N ′ = ∫
D({aj }) exp{−H}. The densities ai(xi) are place

holders for any OP component or secondary density corresponding to the dynamic variables
introduced in the previous sections. Cumulants and two-point vertex functions are analogously
introduced as presented in (26)–(31). The different secondary densities do not couple among
each other in the extended functional (48). Therefore, correlations between different secondary
densities in (49) factorize and the corresponding cumulants and also the vertex functions vanish.
The only nonvanishing vertex functions of the Gaussian secondary densities without static OP
coupling {mi0} and j0 are the two-point vertex functions �̊mimi

= �̊jj = 1 corresponding to
(40) and (42). Only vertex functions which emanate from cumulants containing the OP and/or
the coupled secondary densities {mi0} are nontrivial. The OP and the secondary densities {mi0}
are not coupled in the Gaussian part, thus all two-point cumulants 〈ϕ0 mi0〉c are zero and the
OP cumulant 〈ϕ0 ϕ0〉c and the cumulants 〈mi0 mj0〉c can be treated separately. According
to (47) only the two-point vertex functions �̊ϕϕ+(τ̊ , ˚̃u, γ̊ , k) and �̊mMmM

(τ̊ , ˚̃u, γ̊ , k) have to be
calculated.

As previously mentioned, the extended static functional does not add any new static
critical behaviour compared with the GLW functional. Thus, the additional parts in (48)
coming from the secondary densities may be integrated out. The integration of the Gaussian
functions exp

{−H(Nv)
m

}
and exp{−Hj } delivers only constant factors, which are cancelled

by the normalization constant in which the integration must also be performed, so that
the parameters τ̊ and ˚̃u in (38) are not affected by the procedure. But the integration of
exp

{−H(Ms)
m

}
(particularly the contribution of mM0) leads to shifted parameters which have

to be equal to the parameters in the GLW functional (24). Thus, one obtains the relations

r̊ = τ̊ + γ̊ h̊, ů = ˚̃u − 3γ̊ 2 (50)

between the parameters of the GLW and the extended functional. Using the relations in (50),
one can immediately see by a simple internal rearrangement that the OP two-point vertex
function of the extended static functional and the GLW functional are identical, that is

�̊
(ext)
ϕϕ+ (τ̊ , ˚̃u, γ̊ , k) = �̊ϕϕ+(r̊, ů, k). (51)

The introduction of the Tc-shift and the correlation length leads to the same function
�̊ϕϕ+(ξ−2, ů, k) as presented in the previous subsection. Applying the same procedure together
with (50) to the secondary density vertex function leads to

�̊mMmM
(τ̊ , ˚̃u, γ̊ , k) = �̊(s)

mm(ξ−2, ů, γ̊ , k) = [C̊(s)
mm(ξ−2, ů, γ̊ , k)

]−1
. (52)

We dropped the index M in the second expression because only one function exists after the
‘orthogonalization’ procedure.

The reduction of the extended static functional to the GLW functional also implies that
correlation functions of the density mM0 calculated with (49) are related to correlations of the
OP calculated with (25). For the expectation value and the two-point correlation function, one
obtains the relations

〈mM0(x)〉 = h̊ − γ̊
〈

1
2 |�ϕ0(x)|2〉, (53)

〈mM0(x)mM0(0)〉c = 1 + γ̊ 2
〈

1
2 |�ϕ0(x)|2 1

2 |�ϕ0(0)|2〉
c
. (54)

The external field h̊ introduced in (40) and (47) is used to eliminate the finite expectation value
of mM0. Choosing h̊ = γ̊

〈
1
2 |�ϕ0(x)|2〉, we have 〈mM0(x)〉 = 0 from (53).
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6. Dynamic correlation and vertex functions

6.1. Relation between dynamic correlation and vertex functions

Quite analogous to the correlation functions in statics composed with the corresponding static
functional, the dynamic correlation functions are defined as

〈α1(x1, t1) · · · αr(xr , tr )〉 = 1

ND

∫
D({aj }, {ãj })α1(x1, t1) · · · αr(xr , tr ) e−J (55)

with the dynamic functional J introduced in (23) and the normalization is ND =∫
D({aj }, {ãj }) e−J . The time-dependent densities αi(x, t) now represent any dynamic

variable ai(x, t) (OP component or secondary density) or auxiliary density ãi (x, t). The
dynamic cumulants are introduced in the same way as it has been done with the static
correlation functions in (26). The Fourier transform of the dynamic two-point cumulants
is usually introduced as

〈αi(k1, ω1)αj (k2, ω2)〉c =
∫

dx1

∫
dt1

∫
dx2

∫
dt2〈αi(x1, t1)αj (x2, t2)〉c

× exp(−(ik1x1 + ik2x2)) exp(iω1t1 + iω2t2). (56)

As in section 5, the correlations are invariant under translations in space and now also under
translations in time. This means 〈α1(x1, t1)αj (x2, t2)〉c = 〈αi(x1 − x2, t1 − t2)αj (0, 0)〉c from
which follows

〈αi(k1, ω1)αj (k2, ω2)〉c = 〈αi(k1, ω1)αj (−k1,−ω1)〉cδ(k1 + k2)δ(ω1 + ω2). (57)

The auxiliary densities introduced in the current approach for the dynamic functional provide
a slightly more elaborate connection between cumulants and vertex functions as in statics. The
two-point vertex function is the inverse of the two-point cumulant quite analogous to statics
indeed, but we now have to incorporate the matrix structure of the functions. Introducing the
dynamic correlation matrix C̊(k, ω) with components

C̊αiαj
(k, ω) = 〈αi(k, ω)αj (−k,−ω)〉c, (58)

a special structure can be observed when the indices i and j are first running over all dynamic
variables a and then over all corresponding auxiliary densities ã. If the densities are ordered
in this way, the matrices of the dynamic two-point correlation functions and two-point vertex
functions are related by

C̊(k, ω) =
([

C̊aiaj

]
(k, ω)

[
C̊ãiaj

]
(k, ω)[

C̊ai ãj

]
(k, ω) [0]

)

=
(

[0]
[
�̊ai ãj

]
(−k,−ω)[

�̊ãiaj

]
(−k,−ω)

[
�̊ãi ãj

]
(−k,−ω)

)−1

= Γ̊
−1

(−k,−ω). (59)

From the structure in (59) follows that the nondiagonal submatrices fulfil the relation[
C̊ai ãj

]
(k, ω) = [�̊ãiaj

]−1
(−k,−ω). (60)

The perturbation expansion in dynamics is performed quite analogous to statics described in
section 5.1. In order to obtain the dynamic vertex functions in (59), which determine the
correlation functions related to experimental quantities as will be discussed subsequently, all
one-particle irreducible graphical contributions with two external legs have to be collected in
a given order.
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6.2. General structure of the dynamic vertex functions

From (59) one can see that in the current approach for every pair of densities ai, aj three
types of dynamic functions, namely �̊ai ãj

, �̊ãiaj
and �̊ãi ãj

, exist. Due to general properties
and internal structures only a small subset of all these functions really has to be calculated as
shown in the following.

• In the case of real KCs, the correlation matrix C̊ and also the matrix of vertex functions
Γ̊ are Hermitian, thus the nondiagonal submatrices have the property

[
�̊ãiaj

] = [�̊ai ãj

]+
.

• Recently [72], a closer examination of the two loop expansion has revealed that the
dynamic response vertex functions �̊ai ãj

have the general structure

�̊ai ãj
(ξ, k, ω) = −iω�̊ai ãj

(ξ, k, ω) +
∑

l

�̊(s)
aial

(ξ, k)�̊
(d)
al ãj

(ξ, k, ω) (61)

where �̊aiaj
(ξ, k) is the static two-point vertex function of the GLW model and �̊ai ãj

and

�̊
(d)
ai ãj

are purely dynamic functions. We expect that this structure also holds in higher loop
order although this has not been proven. Quite analogous as discussed in the mentioned
sections, the singularities at d = 3 have been absorbed by introducing the parameter r̊c

for the Tc-shift and the correlation length ξ(r̊ − r̊c). Therefore, ξ enters as an argument
in all functions.

• The dynamic vertex functions �̊ãi ãj
can be expressed by the functions �̊ai ãj

and �̊
(d)
al ãj

via
the relation

�̊ãi ãj
(k, ω) = −2

∑
l

Re
[
�̊al ãi

(k, ω)�̊
(d)
al ãj

(k, ω)
]
. (62)

Thus, the knowledge of the two functions �̊ai ãj
and �̊ai ãj

completely determines the
matrix of vertex functions in (59).

6.3. Lowest order of the dynamic vertex functions

In lowest order, the dynamic functions appearing in (61) are

�̊
(0)
ai ãj

(k, ω) = �ij (k, ω) (63)

with

�ij (k, ω) =
{
δij for any real densities ai, ãj

1 − δij for every pair of conjugated densities ai, ãj = ã+
i

(64)

and

�̊
(d)(0)
ai ãj

(k, ω) = L̊ij (k). (65)

In section 3, the structure of L̊ij has been discussed. For the (Fourier transformed) KCs, one
has

L̊ij (k) =



̊ij k

2 for any conserved real densities ai, aj


̊ij for any non-conserved real densities ai, aj

(1 − δij )2
̊i for any pair of non-conserved densities ai, aj = a+
i .

(66)

The lowest order of the static vertex function is simply

�̊(s)(0)
aiaj

(k) = χ̊−1
ij (k) (67)
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with

χ̊−1
ij (k) =


(r̊ + k2) if ai = aj = φ is the real OP
(1 − δij )

1
2 (r̊ + k2) if {ai, aj } = {ψ,ψ+} correspond to a

complex OP
δij for any secondary densities ai, aj .

(68)

Thus the zeroth order of the response vertex functions is

�̊
(0)
ai ãj

(k, ω) = −iω�ij +
∑

l

χ̊−1
il L̊lj (k). (69)

From relations (62) and (69), one obtains

�̊
(0)
ãi ãj

(k, ω) = −2 Re[L̊ij (k)]. (70)

Inserting (69) and (70) into (59) leads to the zeroth order of the correlation matrix which
represents the dynamic propagators of the system.

6.4. Simplifications of the structure in special models

In section 6.2, we have considered the general expressions of the dynamic vertex functions
and the structures therein. In concrete models considered in this review, the matrices simplify
considerably for several reasons.

Models without secondary densities. Some of the models (A, B, J) include only the order
parameter. In this case, (59) reduces to a relation between two-dimensional matrices for a real
OP and four-dimensional matrices for a complex OP. In both cases, the connection between
the dynamic correlation function and the dynamic vertex functions is

C̊ϕϕ+(ξ, k, ω) = − �̊ϕ̃ϕ̃+(ξ,−k,−ω)

|�̊ϕϕ̃+(ξ,−k,−ω)|2 . (71)

From (61) and (62) follows for the structure of the dynamic vertex functions

�̊ϕϕ̃+(ξ, k, ω) = −iω�̊ϕϕ̃+(ξ, k, ω) + �̊
(s)
ϕϕ+(ξ, k)�̊

(d)
ϕϕ̃+(ξ, k, ω) (72)

and

�̊ϕ̃ϕ̃+(ξ, k, ω) = −2 Re
[
�̊ϕϕ̃+(ξ, k, ω)�̊

(d)
ϕϕ̃+(ξ, k, ω)

]
. (73)

So far in the static and dynamic functions only ξ, k and ω have been mentioned explicitly as
arguments for convenience. Of course, these functions also depend on the model parameters,
which are the static couplings ů, γ̊ , the kinetic coefficients 
̊ij and mode coupling parameters
g̊i . The latter are parameters defined from (2) and describe the reversible part of the
dynamic equations. In the dynamic models considered in this review, the term δQij /δa

+
j

in (2) does not contribute. In this case, the mode coupling parameters are defined by
Qij = kBT

{
ai, a

+
j

} = gijf ({a}), where f ({a}) contains secondary densities which may
appear in the Poisson bracket (see also section 7.2). The couplings gij are divided into sets
including mode couplings with the same cut-off dimension. Each set is represented by a mode
coupling g̊i . A closer look at the two dynamic functions �̊ϕϕ̃+ and �̊

(d)
ϕϕ̃+ as functions of the

model parameters reveals a further general structure valid in all dynamic models, which is
important for the determination of the dynamic exponent zϕ in the subsequent sections. �̊ϕϕ̃+

can be written as

�̊ϕϕ̃+ = 1 + �̊R(ů2) +
∑

i

γ̊iW̊
(i)
ϕϕ̃+(ů, {γ̊l}, {
̊kl}, {g̊l}). (74)
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In the above expression, even the case of the existence of several static couplings {γ̊i} has been
incorporated. The function �̊R only contains contributions from the static coupling ů and
represents the result for model A/B in the case of a non-conserved/conserved OP. All other
contributions are proportional to the static couplings γ̊i . This means that in all models without
static couplings γ̊i the function �̊ϕϕ̃+ = 1 + �̊R(ů2) is simply determined by model A/B
although these models may include mode couplings {g̊i}. This is in contrast to the structure
of �̊

(d)
ϕϕ̃+ which is determined by the mode couplings {g̊i}. The kinetic coefficient 
̊ϕϕ+ for the

OP is usually denoted by 
̊ϕϕ+ = 2�̊ in the case of a complex OP and 
̊φφ = �̊ for a real OP.
Using this notation, one obtains

�̊
(d)
ϕϕ̃+ = 2�̊ka +

∑
i

g̊iG̊
(i)
ϕϕ̃+(ů, {γ̊l}, {
̊kl}, {g̊l}). (75)

The exponent a in the first term of (75) is 0 for a non-conserved and 2 for a conserved OP.
All nontrivial contributions to the function are proportional to the mode couplings, thus this
function is simply 2�̊ka in all models without mode couplings. The explicit expressions of the
functions W̊

(i)
ϕϕ̃+ and G̊

(i)
ϕϕ̃+ depend of course on the considered dynamic model. For conserved

OPs (a = 2), the function G̊
(i)
ϕϕ̃+ can be written as

G̊
(i)
ϕϕ̃+ = 2�̊k2 ˚̄G

(i)

ϕϕ̃+ (76)

where ˚̄G
(i)

ϕϕ̃+ is finite at k = 0. Therefore, the dynamic vertex function (75) is proportional to
k2 and can be written as

�̊
(d)
ϕϕ̃+ = 2�̊k2

[
1 +
∑

i

g̊i
˚̄G

(i)

ϕϕ̃+(ů, {γ̊l}, {
̊kl}, {g̊l})
]

(77)

for conserved OPs.

Models with decoupled dissipation of OP and secondary densities. The OP and the secondary
densities are considered as dynamically decoupled if the matrix of the KCs (66) contains no
cross coefficients Lϕαk

between them. There are two classes of models in which the OP and
the secondary densities decouple:

• Models with relaxing OP (models C, E, F, G). Kinetic cross coefficients cannot exist
between relaxing and conserved densities and the secondary densities are always
conserved.

• Models with conserved scalar OP and the conserved secondary density being a vector
or vector component (model H). Kinetic cross coefficients exist only for densities which
have the same behaviour regarding the time inversion. The scalar OP is invariant (even)
under time inversion while vectors like magnetizations or current densities change sign
(odd).

In these cases, the structure of the matrices in (59) allows the separation into submatrices only
containing the OP functions and submatrices only containing the functions corresponding to
the secondary densities. The OP functions fulfil the same relations (71)–(75) as described
above. The correlation functions of the secondary densities can then be calculated within the
subspace of the secondary densities analogous to (59) with([

C̊βiβj

]
(k, ω)

[
C̊β̃iβj

]
(k, ω)[

C̊βi β̃j

]
(k, ω) [0]

)
=
(

[0]
[
�̊βi β̃j

]
(−k,−ω)[

�̊β̃iβj

]
(−k,−ω)

[
�̊β̃i β̃j

]
(−k,−ω)

)−1

, (78)

where β is a placeholder for any secondary density mi0 or j0. The dynamic response vertex
functions of the secondary densities have the general structure
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�̊βi β̃j
(ξ, k, ω) = −iω�̊βi β̃j

(ξ, k, ω) +
∑

l

�̊
(s)
βiβl

(ξ, k)�̊
(d)

βl β̃j
(ξ, k, ω). (79)

The sum covers the number of secondary densities. �̊βiβl
(ξ, k) are components of the matrix

of the static two-point vertex functions calculated with the extended static functional (48) as
described in section 5.2. A relation corresponding to (73) also holds for the dynamic vertex
functions of the secondary densities. It reads

�̊β̃i β̃j
(ξ, k, ω) = −2

∑
l

Re
[
�̊βl β̃i

(ξ, k, ω)�̊
(d)

βl β̃j
(ξ, k, ω)

]
. (80)

Considering the dependence on the model parameters, an analogous structure to (74) and (75)
can be found. One has

�̊βi β̃j
= δij + γ̊iW̊β̃j

(ů, {γ̊l}, {
̊kl}, {g̊l}) (81)

and

�̊
(d)

βi β̃j
= 
̊ij k

2 + g̊iG̊β̃j
(ů, {γ̊l}, {
̊kl}, {g̊l}). (82)

Like the corresponding dynamic OP functions these functions again have the same feature
that the static couplings γ̊i and the mode couplings g̊i determine which of the two functions in
(81) and (82) is trivial. In systems without static couplings (models E, G, H), we have simply
�̊βi β̃j

= δij . In contrast, in systems without mode couplings (model C) it follows from (82)

that �̊
(d)

βi β̃j
= 
̊ij k

2. The functions W̊β̃j
and G̊β̃j

depend on the precise dynamic model which

is considered. The dynamic vertex functions (82) are proportional to k2 and can be written
quite analogously to (77) as

�̊
(d)

βi β̃j
= k2[
̊ij + g̊i

˚̄Gβ̃j
(ů, {γ̊l}, {
̊kl}, {g̊l})] (83)

with finite functions ˚̄Gβ̃j
= G̊β̃j

/k2 at k = 0. In the current review, we consider dynamic
models with one or two secondary densities. If only one secondary density is present, the
corresponding kinetic coefficient 
̊11 will be denoted by λ̊. In the case of two secondary
densities, the notation used in the following depends on whether the two densities are coupled
(
̊12 �= 0) or not (
̊12 = 0) in their dissipative modes. Secondary densities of different
vector type, as for instance energy density (scalar) and a magnetization (vector), do not couple
dissipatively thus the kinetic coefficients 
̊ii are denoted by λe, λm and so on. In the case of
two scalar secondary densities, the dissipative coupling exists and a matrix

[
̊ij ] =
(

λ̊ L̊

L̊ µ̊

)
≡ Λ̊ (84)

will be used.

6.5. Relation to experimentally measurable quantities

In the previous section, we have discussed the structure of the unrenormalized dynamic vertex
functions in an abstract manner. These functions are important because they are on the one
hand directly calculable in perturbation theory and on the other hand related to experimentally
accessible quantities. Basically there are two fields where a connection to experimental
quantities exists.

Correlation functions. In scattering experiments usually correlation functions
〈ai(k, ω)aj (−k,−ω)〉c at finite k and ω can be measured. This may be the OP correlation
function, as for instance the spin correlation in magnets measured with neutron scattering
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experiments, or the mass density correlation in liquids at the gas/liquid critical point measured
with light scattering. But also correlation functions corresponding to secondary densities may
be measured by inelastic light scattering like the density correlation in 4He at the superfluid
transition. Within the theoretical approach, the relation between dynamic vertex functions and
correlation functions is generally given by (59) and for special cases in (71) and (78).

Hydrodynamic modes. In the case of conserved densities, the generalized Poisson brackets
in the dynamic equations (1) are constructed in a way that they also define the corresponding
reversible hydrodynamic equations. The same is true for the dissipative part where the structure
of the Onsager coefficients in hydrodynamics determines the structure of the KCs in the matrix
Lij . The main difference between hydrodynamic equations and the dynamic equations (1)
is that the latter use a non-Gaussian static functional, which also includes gradient terms,
leading to nonlinear terms in the dynamic equations. With a purely Gaussian functional
H = ∫

ddx
∑

i a
2
i

/
2, equations (1) reduce to the corresponding hydrodynamic equations.

Accordingly, the lowest order of the dynamic vertex functions reflects the Fourier-transformed
hydrodynamic equations (see section 6.3). The determinant of the coefficient matrix �H of
the Fourier-transformed linearized (in the densities) hydrodynamic equations can be factorized
into dissipative modes [73]. These modes have to be compared with the modes resulting from
the matrix of dynamic vertex functions �̊ai ãj

. Typical dissipative modes are as follows:
(i) The diffusion process with diffusion coefficient D. It is determined by the equation

∂a(x, t)

∂t
= D∇2a(x, t) or (−iω + Dk2)a(k, ω) = 0 (85)

leading to a hydrodynamic determinant �H = −iω + Dk2. The diffusion coefficient D does
not depend on k and ω. One has to compare (85) with

�̊aã(ξ, k, ω) = −iω�̊aã(ξ, k, ω) + �̊(s)
aa (ξ, k)�̊

(d)
aã (ξ, k, ω) (86)

taken in the hydrodynamic limit. The functions �̊aã and �̊
(d)
aã have special properties in the

limit ω → 0, k → 0 when a is a conserved density. At first (77) and (83) imply that we can
write

�̊
(d)
aã (ξ, k, ω) = k2f̊

(d)
aã (ξ, k, ω) (87)

where f̊
(d)
aã (ξ, 0, 0) is a finite function. And secondly the function �̊aã(ξ, k, ω) has the property

�̊aã(ξ, 0, 0) = 0. (88)

Thus, in the hydrodynamic limit (86) reduces to

�̊aã(ξ, k, ω) = −iω + �̊(s)
aa (ξ, 0)f̊

(d)
aã (ξ, 0, 0)k2. (89)

Comparing with (85) immediately leads to

D = �̊(s)
aa (ξ, 0)f̊

(d)
aã (ξ, 0, 0) = ∂�̊aã(ξ, k, 0)

∂k2

∣∣∣∣∣
k=0

. (90)

The above equation relates an experimental diffusion coefficient D to unrenormalized response
vertex functions.

For several coupled diffusive processes, the procedure is quite analogous with the
difference that the hydrodynamic determinant is a more complex expression. Considering
the system of equations

∂ai(x, t)

∂t
= −

∑
j

Dij∇2aj (x, t) or
∑

j

(−iωδij + Dijk
2)aj (k, ω) = 0 (91)

where Dij is a nondiagonal matrix, the hydrodynamic determinant is now written in terms
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of the eigenvalues λi of the matrix Dij . With an orthogonal transformation determined by
the eigenvectors, the matrix Dij turns into a diagonal matrix. Assuming that there are r
eigenvalues, the determinant is simply

�H = (−iω + λ1k
2)(−iω + λ2k

2) · · · (−iω + λrk
2) (92)

where the eigenvalues λi = λi({Dij }) are functions of the diffusion coefficients. This has to
be compared with the determinant calculated from the matrix

�̊ai ãj
(ξ, k, ω) = −iωδij +

∑
l

�̊(s)
aial

(ξ, 0)f̊
(d)
al ãj

(ξ, 0, 0)k2

= −iωδij +
∂�̊ai ãj

(ξ, k, 0)

∂k2

∣∣∣∣∣
k=0

k2. (93)

(ii) In order to obtain the critical behaviour of the sound velocity and sound attenuation,
extended dynamic models (not considered explicitly in this review) may be introduced. They
include additional dynamic equations for variables, which are necessary for sound propagation.
In systems with a dynamics based on hydrodynamic equations these are for instance the
equations for the mass density ρ and the longitudinal mass current jl . Such extended models
have been established in 4He [35] and 3He–4He mixtures at the λ-transition [74] or in liquids
at the gas/liquid transition and binary mixtures at the gas/liquid and liquid/liquid transition
[34]. The additional equations lead to a dissipative mode of the form ω2 + iωDsk

2 − c2
s k

2.
The coefficient cs denotes the sound velocity and Ds is related to the sound attenuation.

In these extended models, a new type of dynamic response vertex functions appears
which is different from (87) in its k-dependence. The dynamic vertex functions �̊ai j̃l

and �̊jl ãi

corresponding to jl have the structure

�̊
(d)
jl ãi

(ξ, k, ω) = ikf̊
(d)
jl ãi

(ξ, k, ω), (94)

�̊
(d)

ai j̃l
(ξ, k, ω) = ikf̊

(d)

ai j̃l
(ξ, k, ω), (95)

where ai denotes any scalar density in the considered model. Again f̊
(d)
jl ãi

(ξ, 0, 0) and

f̊
(d)

ai j̃l
(ξ, 0, 0) are finite functions.
Thus, in general the dissipative modes for conserved densities may have the structure

�H = (−iω + λ1k
2) · · · (−iω + λrk

2)
(
ω2 + Ds iωk2 − c2

s k
2
)

(96)

when the hydrodynamic equations include r diffusion modes and one sound mode. Therefore,
it is obvious to compare the coefficients in the hydrodynamic modes with the corresponding
expressions calculated from the matrix of dynamic vertex functions. Of course, this leads
to more complex relations (see for instance [34]) between experimental quantities and field-
theoretic vertex functions compared to (90).

7. Renormalization and field-theoretic functions

So far we have given a survey over the definitions and properties of the unrenormalized
functions and parameters usually appearing in models describing the critical dynamic
behaviour. Experimentally accessible quantities can be related to unrenormalized dynamic
vertex functions or correlation functions, which once again are related to dynamic vertex
functions within the considered approach. By introducing the Tc-shift and the correlation
function in the static functions as well as in the dynamic functions and applying the general
structure (61) and (62) within dynamics, all functions are in a form ready to apply any
field-theoretic renormalization scheme.
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Several field-theoretic renormalization approaches are available in the literature. They
can be roughly separated into two classes. The approaches in the first class use ε-expansion
(ε = 4 − d) and extrapolate the obtained expressions to ε = 1 (d = 3). For the method
using normalization conditions see [75], for the minimal subtraction scheme see [76]. The
approaches in the second class avoid the ε-expansion and calculate all functions directly
at d = 3 where the theory is super-renormalizable [64]. A renormalization scheme using
the minimal subtraction scheme while calculating the finite amplitudes at d = 3 has been
developed in [66].

7.1. Renormalization of the static parameters

GLW functional. The renormalization of the Ginzburg–Landau–Wilson functional (24) is well
known within different renormalization schemes [64, 66, 75, 76]. Assuming in general a
complex OP �ϕ, we define its renormalization constant (RC) Zϕ by

�ϕ0 = Z1/2
ϕ �ϕ, �ϕ+

0 = Z1/2
ϕ �ϕ+ (97)

where Zϕ is a real quantity and identical to the RC Zφ for a real OP �φ. For the renormalization
of the fourth-order coupling u appearing in (24), the RC Zu is introduced as

ů = κεZ−2
ϕ ZuuA−1

d , (98)

where κ represents a free wave number scale. For convenience we have introduced the
geometry factor

Ad = �
(

1 − ε

2

)
�
(

1 +
ε

2

) �d

(2π)d
(99)

with d the spatial dimension,

�d = 2πd/2/�(d/2) (100)

the surface of the d-dimensional unit sphere and �(x) the Euler �-function. The RCs
introduced so far are not enough in order to make all static vertex functions finite. Vertex
functions with |ϕ|2-insertions contain poles which cannot be absorbed by Zϕ and Zu. Thus, a
Zϕ-factor

|ϕ0|2 = Zϕ2 |ϕ|2 (101)

is necessary to renormalize vertex functions containing |ϕ|2-insertions. At least the correlation
function 〈|ϕ0|2|ϕ0|2〉c, which represents the specific heat within the GLW model, needs an
additive renormalization Aϕ2(u).

The renormalization described so far is not restricted to a special approach. The RCs
may be determined by normalization conditions or within the minimal subtraction scheme.
We want to remark that the usage of the minimal subtraction scheme as a renormalization
approach makes it necessary to introduce a RC Zr for the parameter r̊ which is

r̊ − r̊c = Z−1
ϕ Zrr. (102)

If the Tc-shift r̊c(ů) and the correlation length ξ−2(r̊− r̊c, ů) have been introduced, the RC Zr is
determined by the condition that ξ−2(r, u) does not contain any ε-poles. The renormalization
of r in (102) is connected to the renormalization of the 1

2 |ϕ|2-insertions by the relation

Zϕ2 = Z−1
ϕ Zr . (103)

As a consequence, one does not need to consider correlation or vertex functions containing
1
2 |ϕ|2-insertions explicitly within the minimal subtraction scheme apart from the additive
renormalization Aϕ2(u) of the specific heat, which can be written as

Aϕ2(u) = −κε

4

[
Z2

ϕ2〈|ϕ0|2|ϕ0|2〉c
]
S
A−1

d (104)
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in this renormalization approach. The bracket [·]S denotes the singular part containing only
ε-poles of the embraced function.

Extended static functional. The renormalization of the general form (48) of the extended
functional is equal to the renormalization of the extended functional (40) which includes only
one scalar secondary density. This has two reasons. The first one is that secondary densities
without a static coupling γ need no renormalization because they contribute only trivially to
the loop expansion of the vertex functions. The second one is that even when more than one
scalar secondary density is present, the corresponding static functional is equivalent to (47)
where only one secondary density couples to the OP. The renormalization of the extended
static functional including one scalar secondary density (40) has been considered in detail in
[21] using the normalization condition approach and in [77, 78] within the minimal subtraction
scheme. The justification of several relations between the static Z-factors mentioned below
can also be found therein.

Although one may introduce RCs for τ̊ and ˚̃u quite analogous to (102) and (98) it is not
necessary to consider them explicitly here. The complete renormalization of the extended
model is determined by the RCs of the GLW model and the additional parameters in (40).
The latter require the introduction of further RCs. The secondary density m0 and the coupling
parameter γ̊ between OP and secondary density will be renormalized analogously to (97) and
(98) by

m0 = Zmm, γ̊ = κε/2Z−1
ϕ Z−1

m Zγ γA
−1/2
d . (105)

Note that we have introduced the Z-factor Zm instead of Z
1/2
m contrary to most of the definitions

in the literature. Our definition is more convenient if one wants to maintain consistency with
the definitions useful in model C′ [71] or model F′ [72] where a renormalization matrix Zm

has to be introduced.
Since the extended static functional is a Gaussian extension of the GLW model, no new

independent RCs are necessary. Both new RCs Zm and Zγ introduced in (105) are related to
renormalizations in the GLW model. First, the RC of the static coupling γ is determined by

Zγ = Z2
mZϕZϕ2 . (106)

Inserting this into (105) gives

γ̊ = κε/2Zϕ2ZmγA
−1/2
d . (107)

Second, the renormalization factor Zm of the secondary density is determined by the additive
renormalization Aϕ2(u) of the specific heat in the GLW model with the structure

Z−2
m (u, γ ) = 1 + γ 2Aϕ2(u). (108)

7.2. Renormalization of the dynamic parameters

In this subsection, we will discuss all dynamic renormalizations necessary for the different
models. The RCs necessary in dynamics and their properties can be classified into three
groups, namely the RCs of the auxiliary densities, the KCs and the mode coupling parameters.
All three groups will be discussed in general including all dynamic models.

Auxiliary densities. In the dynamic functional (23) auxiliary densities ãi have been introduced.
How they renormalize depends mainly on the conservation property of the corresponding
density ai .
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In all dynamic models at least the OP �ϕ0 is present and a corresponding auxiliary density
�̃ϕ0 appears in the dynamic functional. The renormalization of the auxiliary density is usually
written as

�̃ϕ0 = Z
1/2
ϕ̃

�̃ϕ, �̃ϕ+
0 = Z

1/2
ϕ̃+ �̃ϕ+

. (109)

In contrast to Zϕ in statics Zϕ̃ may be a complex quantity and in such a case we have Zϕ̃+ = Z+
ϕ̃ .

Concerning the structure of Zϕ̃ we may distinguish two cases:

• Conserved OP. In all dynamic models with a conserved OP (models B, H, J) the function
�̊ϕϕ̃+ in the dynamic OP vertex function (72) does not contain any new ε-poles which
could not be removed with the remaining RCs. Therefore, one has

Zϕ̃ = Z−1
ϕ . (110)

As a consequence, Zϕ̃ is always real in such models.
• Non-conserved OP. In all dynamic models with a non-conserved OP (models A, C, E, F,

G, SSS, DP) the factor Zϕ̃ is a new independent renormalization. From (74) immediately
follows that it has the structure

Zϕ̃ = Z
(A�)
ϕ̃ Z

(γ )
ϕ̃ (111)

where Z
(A�)
ϕ̃ is the RC of the auxiliary density in model A�, a generalization of model A

to a complex KC �. Only dynamic models with a coupling γ in their static functional
(models C, F) have a nontrivial RC Z

(γ )
ϕ̃ . Otherwise (models A, E, G) one has simply

Z
(γ )
ϕ̃ = 1.

Only the one secondary density m0 with a static coupling γ to the OP needs a renormalization
as discussed in the previous subsection. The same is true for the corresponding auxiliary
density m̃0. Thus, we have

m̃0 = Zm̃m̃ (112)

and m̃0 = m̃ for all other secondary densities without a static coupling to the OP. Secondary
densities are always conserved therefore no new independent RC Zm̃ is needed for m̃0.
Analogous to (110), it is simply renormalized with

Zm̃ = Z−1
m . (113)

Kinetic coefficients. In all models, a kinetic coefficient � of the OP is present and it
renormalizes as

�̊ = Z��. (114)

From (72) follows that Z� contains contributions from the renormalization of the dynamic
functions �̊ϕϕ̃+ and �̊

(d)
ϕϕ̃+ as well as static contributions. Generally, we can write

Z� = Z1/2
ϕ Z

−1/2
ϕ̃+ Z

(d)
� , (115)

where Z
(d)
� contains the poles of �̊

(d)
ϕϕ̃+ . The above relation (115) may simplify in different

models for the following reasons:

• In all dynamic models without mode coupling parameters g (models A, B, C), we simply
have Z

(d)
� = 1. This follows from the general structure (75) of �̊

(d)
ϕϕ̃+ where all contributions

of the loop expansion are proportional to g.
• In models with conserved OP (models B, H, J), we can insert (110) into (115) and obtain

Z� = ZϕZ
(d)
� . (116)

In model B where also no mode couplings are present, this relation simplifies further to
Z� = Zϕ (see first item).
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• In models with non-conserved OP where no static coupling γ is present (models A, E, G),
it follows from (74) that Zϕ̃ = Z

(A�)
ϕ̃ for the renormalization factors of the OP auxiliary

density. Inserting into (115) leads to

Z� = Z1/2
ϕ

(
Z

(A�)
ϕ̃+

)−1/2
Z

(d)
� , (117)

which further reduces to Z� = Z
1/2
ϕ

(
Z

(A�)
ϕ̃+

)−1/2
in model A� due to the absence of mode

couplings.

If secondary densities are present the corresponding KCs also need a renormalization.
Considering at first models with one secondary density the KC renormalizes as

λ̊ = Zλλ. (118)

The structure of Zλ now depends on the existence of a static coupling γ and a mode coupling
g. The RC Zλ can always be separated into a product of a static and a dynamic Z-factor, that
is

Zλ = Z2
mZ

(d)
λ . (119)

In dynamic models where a static coupling γ and a mode coupling g is present (model F),
Zm is the static RC defined in (105) and Z

(d)
λ contains purely dynamic contributions. In

most dynamic models either a static coupling or a mode coupling is present. Then several
simplifications in (119) take place:

• In dynamic models without a mode coupling g (model C), the dynamic RC is Z
(d)
λ = 1.

Therefore, the renormalization of the kinetic coefficient is determined by statics and (119)
reduces to

Zλ = Z2
m. (120)

• In dynamic models without a static coupling γ (models E, G, H), the secondary density
needs not be renormalized, thus Zm = 1 and (119) reduces to

Zλ = Z
(d)
λ . (121)

In dynamic models with two secondary densities (models C′, E′, F′) three KCs are present,
which can be written as a matrix

Λ̊ =
(

λ̊ L̊

L̊ µ̊

)
. (122)

Analogous to (118), the coefficients renormalize as

λ̊ = Zλλ, L̊ = ZLL, µ̊ = Zµµ. (123)

Although initially both secondary densities couple with parameters γ1 and γ2 to the OP, the
static functional can always be transformed to a form in which only one secondary density has
a coupling γ (see the discussion in section 5.2). Assuming that the second secondary density,
which corresponds to µ̊, couples to the OP, the Z-factors in (123) separate into a static and a
dynamic part as follows:

Zλ = Z
(d)
λ , ZL = ZmZ

(d)
L , Zµ = Z2

mZ(d)
µ . (124)

Such a separation (124) occurs for instance in model F′. The simplifications in cases where
either static couplings or mode couplings are present remain the same as discussed above for
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the case of one secondary density. Without static couplings (model E′) we have Zm = 1, and
without mode couplings (model C′) we have Z

(d)
λ = Z

(d)
L = Z(d)

µ = 1.

Mode couplings. Models with a nonvanishing reversible part (2) contain mode coupling
parameters. As already outlined in section 6.4, the mode coupling parameters are defined
from (3) by the Poisson bracket relation

Qij = kBT
{
ai, a

+
j

} = g̊f ({a}). (125)

The renormalization of a mode coupling g̊ is introduced as

g̊ = κε/2ZggA
−1/2
d . (126)

Zg is determined by the condition that the Poisson bracket relations should be invariant under
renormalization. This leads to the different renormalizations of g̊ in the models considered.

• Model J (Heisenberg ferromagnet). In this model one looks at a lattice of classical three-
component spin vectors where Sα

i should be the αth component of the spin vector on
lattice site i. The generalized Poisson bracket relations between the spin components are
easily derived either from quantum theory by using the correspondence principle or from
infinitesimal rotations in spin space where �S is their generator [57]. Both methods lead to{

Sα
i , S

β

j

} = εαβγ S
γ

i δij . (127)

The magnetization density

�φ0(x) =
∑

i

�Siδ(x − xi) (128)

represents the OP of the system in this model. The OP is the only dynamic variable
and the corresponding Poisson bracket relations (125) follow by inserting (127) into the
definition of the OP. One obtains for (3)

Qφα(x)φβ(x ′) = kBT
{
φα

0 , φ
β

0

} = g̊εαβγ φ
γ

0 (x)δ(x − x ′). (129)

Inserting the renormalized quantities with relations (97) and (126), one immediately has

Zg = Z
1/2
φ (130)

• Model G (Heisenberg antiferromagnet). In the antiferromagnet, two sublattices A and B
with spins are considered. Let Sα

iA
be the αth component of the spin vector on lattice site

i of lattice A and S
β

iB
the βth component of the spin vector on lattice site i of lattice B.

According to (127), the Poisson bracket relations for the spins are now{
Sα

iA
, S

β

jA

} = εαβγ S
γ

iA
δiAjA

,{
Sα

iB
, S

β

jB

} = εαβγ S
γ

iB
δiBjB

, (131){
Sα

iA
, S

β

jB

} = 0.

Introducing sublattice magnetization densities

�MA(x) =
∑

i

�SiAδ(x − xi), �MB(x) =
∑

i

�SiB δ(x − xi), (132)

the OP �φ0(x) of the model is defined by the staggered magnetization density

�φ0(x) = �MA(x) − �MB(x), (133)

while the magnetization density

�m0(x) = �MA(x) + �MB(x) (134)
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represents a secondary density. Inserting (131)–(134) into (3) leads to the following
Poisson bracket relations:

Qφαφβ = kBT
{
φα

0 (x), φ
β

0 (x ′)
} = g̊φεαβγ φ

γ

0 (x)δ(x − x ′), (135)

Qmαmβ = kBT
{
mα

0 (x),m
β

0 (x ′)
} = g̊εαβγ m

γ

0 (x)δ(x − x ′), (136)

Qφαmβ = kBT
{
φα

0 (x),m
β

0 (x ′)
} = g̊εαβγ φ

γ

0 (x)δ(x − x ′). (137)

An analysis of the naive dimensions reveals that the mode coupling g̊φ in (135) is irrelevant
and therefore has to be neglected in the following. For the dynamic critical behaviour
only the Poisson bracket relations (136) and (137) have to be considered. Inserting the
renormalized quantities by using (97), (105) and (126) leads to the relation

Zg = Zm. (138)

The secondary density is a vector therefore γ = 0 and Zg = Zm = 1.
• Model E (planar ferromagnet). In a planar ferromagnet, the spin vectors order in a plane

in spin space. The components of a three-dimensional magnetization density vector are

Mx(x) =
∑

i

Sx
i δ(x − xi), My(x) =

∑
i

S
y

i δ(x − xi), (139)

Mz(x) =
∑

i

Sz
i δ(x − xi). (140)

Assuming that the ferromagnetic arrangement occurs in the x–y-plane a complex OP

ψ0(x) = Mx(x) − iMy(x) (141)

can be defined. Then, the z-component of the magnetization represents the secondary
density

m0(x) = Mz(x). (142)

The only existing Poisson bracket relation, which does not vanish, is

Qψm = kBT {ψ0(x),m0(x
′)} = −ig̊ψ0(x)δ(x − x ′). (143)

Quite analogous to model G, the relation

Zg = Zm = 1 (144)

can be obtained by inserting the renormalization relations (97), (105) and (126). The last
equality is valid because m0 is a vector component which has no static OP coupling γ in
the extended functional.

• Model H (critical point in fluids). In order to describe the critical behaviour of the thermal
conductivity and the shear viscosity at the gas/liquid critical point in fluids, the dynamic
equations for the entropy density per volume s(x) and the transverse momentum current
density �jt (x) have to be considered. Generalized Poisson brackets can now only be
derived from infinitesimal translations as presented in [57] because the entropy density
has no quantum theoretical counterpart. Only Poisson brackets with the momentum
density being the generator of the translations are different from zero. They are{

s(x ′), jα
t (x)

} = s(x)∇αδ(x − x ′), (145){
jα
t (x ′), jβ

t (x)
} = jα

t (x)∇βδ(x − x ′) − j
β
t (x ′)∇αδ(x − x ′). (146)
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The OP is apart from constant factors determined by the entropy density thus we have
φ0(x) ∼ s(x). The transverse momentum density represents a secondary density without
static coupling γ . The above generalized Poisson brackets lead to the relations

Qφjα
t

= kBT
{
φ0(x

′), jα
t (x)

} = g̊φ0(x)∇αδ(x − x ′). (147)

Q
jα
t j

β
t

= kBT
{
jα
t (x ′), jβ

t (x)
} = g̊

[
jα
t (x)∇βδ(x − x ′) − j

β
t (x ′)∇αδ(x − x ′)

]
. (148)

Taking into account the renormalization of the OP (97) and the property that �jt does not
renormalize, one immediately obtains from (147) and (148)

Zg = 1. (149)

In liquid mixtures at the gas/liquid transition (plait point) or the demixing transition
(consolute point), an additional scalar density has to be incorporated. This is the
concentration of one of the two components of the mixture c(x). It leads to model
H′ which includes the further Poisson bracket{

c(x ′), jα
t (x)

} = c(x)∇αδ(x − x ′). (150)

The scalar concentration represents an additional secondary density m0(x) ∼ c(x)

compared to model H but with a coupling γ in the extended static functional and a
RC Zm �= 1. The corresponding additional Poisson bracket relation reads

Qmjα
t

= kBT
{
m0(x

′), jα
t (x)

} = g̊m0(x)∇αδ(x − x ′) (151)

in accordance with (149).
• Model F (superfluid transition in 4He). Here, the situation is more complex than in the

previous models. Although it is enough to take into account only the equations for the
macroscopic wavefunction of the Bose-condensed state ψ0(x) as OP and the entropy
density per mass σ(x) as secondary density in order to obtain the critical behaviour of the
thermal conductivity, at the level of Poisson brackets the whole set of dynamic variables
has to be considered. This includes apart from ψ0(x) the entropy per volume s(x), the
mass density ρ(x) and the momentum current density �j(x). Because the hydrodynamics
of ordinary fluids is included in the hydrodynamics of superfluids, the infinitesimal
translations lead to the same Poisson brackets (145) and (146). Additionally, one obtains
the Poisson bracket

{ρ(x ′), jα(x)} = ρ(x)∇αδ(x − x ′), (152)

which would also be present in an extended dynamic model for simple fluids incorporating
critical behaviour of sound propagation. In the current model, the generator of
infinitesimal translations also acts on the OP leading to a Poisson bracket

{ψ0(x
′), jα(x)} = −δ(x − x ′)∇′αψ0(x

′) + 1
2ψ0(x

′)∇αδ(x − x ′), (153)

which of course does not exist in simple fluids. The mass density ρ(x) is the generator
of phase transformations of ψ0(x). Infinitesimal phase transformations lead to a further
Poisson bracket

{ψ0(x
′), ρ(x)} = −i

m4

h̄
ψ0(x)δ(x − x ′) (154)

distinguishing the superfluid hydrodynamics from the one of a simple fluid. In (154), m4

is the 4He atomic mass and h̄ is Planck’s constant divided by 2π . The Poisson brackets
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lead to different mode coupling parameters. The corresponding relations are

Qsjα = kBT {s(x ′), jα(x)} = g̊j s(x)∇αδ(x − x ′), (155)

Qρjα = kBT {ρ(x ′), jα(x)} = g̊j ρ(x)∇αδ(x − x ′), (156)

Qjαjβ = kBT {jα(x ′), jβ(x)} = g̊j [jα(x)∇βδ(x − x ′) − jβ(x ′)∇αδ(x − x ′)], (157)

Qψjα = kBT {ψ0(x
′), jα(x)} = −g̊1δ(x − x ′)∇′αψ0(x

′) + g̊2ψ0(x
′)∇αδ(x − x ′), (158)

Qψρ = kBT {ψ0(x
′), ρ(x)} = −ig̊ψ0(x)δ(x − x ′). (159)

A dimensional analysis in the corresponding dynamic equations reveals that the mode
couplings g̊j , g̊1 and g̊2 are irrelevant and therefore have to be neglected. Only
the last relation (159) is relevant for the critical dynamics of 4He at the superfluid
transition. Introducing a secondary density which is proportional to the entropy per
mass m0(x) ∼ s(x)/ρ(x), the Poisson bracket relation (159) and therefore the relevant
mode coupling ig̊ couples to the dynamic equation for m0(x). After the neglection of
all irrelevant couplings, the additional densities ρ(x) and �j(x) appear only in quadratic
order in the dynamic functional. Since they are not necessary for the critical dynamics of
the heat mode, they are eliminated by integration leading to a model at constant pressure
instead of constant mass density. The resulting dynamic functional and the corresponding
dynamic equations are known as model F. The mode coupling term therein is consistent
with a Poisson bracket relation

Qψm = kBT {ψ0(x
′),m0(x)} = −ig̊ψ0(x)δ(x − x ′) (160)

from which immediately

Zg = Zm (161)

follows. In contrast to model E Zm is now a nontrivial RC because the scalar secondary
density (entropy per mass) couples with γ to the OP in the extended static functional.

7.3. ζ -functions

The ζ -functions defined from the renormalization factors introduced in sections 7.1 and 7.2
are not uniformly defined. In the literature different definitions are used depending on the
authors. In the following, we will use in statics and dynamics the uniform definition

ζxi
({yj }) = d ln Z−1

xi

d ln κ
(162)

where {yj } = {u, γ, �,
ij , gi} is the set of static and dynamic model parameters. xi stands
for any density ai, ãi or any model parameter yi . Note that the κ-derivative is always taken
at fixed bare parameters {ẙj }. The only exception in the definition of the ζ -functions is the
additive renormalization Aϕ2 of the specific heat introduced in (108), which leads to

Bϕ2(u) = κεZ2
ϕ2κ

d

dκ

(
Z−2

ϕ2 κ−εAϕ2

)
. (163)

Relations (106) and (108) between the static Z-factors mentioned in section 7.1 also lead to
relations between the ζ -functions, which are

ζγ (u, γ ) = 2ζm(u, γ ) + ζϕ(u) + ζϕ2(u) (164)

and

ζm(u, γ ) = 1
2γ 2Bϕ2(u). (165)
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The second relation can be used to eliminate ζm in the first one. Thus, we obtain

ζγ (u, γ ) = γ 2Bϕ2(u) + ζϕ(u) + ζϕ2(u). (166)

With relations (165) and (166) both ζ -functions ζm and ζγ , which appear additionally in the
extended static functional compared to the GLW functional, are determined by the ζ -functions
of the GLW model (24).

The ζ -function of the kinetic OP coefficient � follows from the Z-factor relation (115) by
inserting into (162). Generally, we have

ζ�(u, γ, �,
ij , gi) = 1
2ζϕ(u) − 1

2ζϕ̃+(u, γ, �,
ij , gi) + ζ
(d)
� (u, γ, �,
ij , gi). (167)

The dependence of the ζ -function on the static coupling γ , KCs 
ij or mode couplings gi is of
course due to the dynamic model under consideration. All simplifications in Z� for different
dynamic models as discussed under the item ‘kinetic coefficients’ in section 7.2 also concern
the ζ -functions because Zx = 1 corresponds to ζx = 0. In the case of a complex OP KC
� = �′ + i�′′ for the OP, as for instance in models F, F′, the relation

ζ�+(u, γ, �,
ij , gi) = ζ +
� (u, γ, �,
ij , gi) (168)

holds. In dynamic models with a secondary density from relation (119) follows

ζλ(u, γ, �,
ij , gi) = 2ζm(u, γ ) + ζ
(d)
λ (u, γ, �,
ij , gi). (169)

If no static coupling γ is present, we get from relation (165) ζm = 0. In such cases it is not
necessary to distinguish between ζλ and ζ

(d)
λ . Dynamic models with two secondary densities

include a matrix (122) of KCs. The corresponding ζ -functions are

ζλ(u, γ, �,
ij , gi) = ζ
(d)
λ (u, γ, �,
ij , gi), (170)

ζL(u, γ, �,
ij , gi) = ζm(u, γ ) + ζ
(d)
L (u, γ, �,
ij , gi), (171)

ζµ(u, γ, �,
ij , gi) = 2ζm(u, γ ) + ζ (d)
µ (u, γ, �,
ij , gi). (172)

Explicit expressions of the dynamic ζ -functions mentioned above are given in appendix A for
several dynamic models.

7.4. β-functions and flow equations

The flow of any model parameter yi as a function of the flow parameter � is determined by the
flow equation

�
dyi

d�
= βyi

({yj }). (173)

Multiplicatively renormalizable model parameters may be generally written in the form

ẙi = κci Z−pi

ϕ Z−qi

m Zyi
yi (174)

where ci is the naive dimension of the corresponding parameter. Dependent on the actual
model parameter the powers ci, pi , qi have different values, which may be finite or zero.
Considering for instance yi = u, from (98) follows ci = ε, pi = 2, qi = 0. Taking yi = � as
a further example, one obtains from (114) ci = pi = qi = 0. From (174) follows the general
structure of the β-functions as

βyi
({yj }) = yi(−ci − piζϕ(u) − qiζm(u, γ ) + ζyi

({yj })) (175)

where the definition of the ζ -functions (162) has been used.
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Statics. Within statics at most two flow equations

�
du

d�
= βu(u), �

dγ

d�
= βγ (u, γ ) (176)

have to be solved. The second equation is only necessary if at least one scalar secondary
density couples to the OP. From (98) and (107), one immediately obtains the β-functions

βu(u) = u(−ε − 2ζϕ(u) + ζu(u)), (177)

βγ (u, γ ) = γ

(
−ε

2
+ ζϕ2(u) +

1

2
γ 2Bϕ2(u)

)
. (178)

In (178) relation (166) has been used. The above two relations reveal that only functions of
the GLW model are necessary in order to determine the critical behaviour of the parameters
even in the extended static functional. The explicit expressions of the ζ -functions of the GLW
model are well known [59, 60] and currently obtained within five-loop order [79]. Within the
minimal subtraction renormalization scheme, the two-loop order expressions are

ζϕ(u) = −n + 2

72
u2, (179)

ζu(u) = n + 8

6
u − 5n + 22

18
u2, (180)

ζϕ2(u) = n + 2

6
u

(
1 − 5

12
u

)
, (181)

Bϕ2(u) = n

2
. (182)

The asymptotic critical region will be approached in the limit � → 0. The parameters u and γ

have to reach fixed points u� and γ � in this limit, which determine the static critical exponents
and amplitude ratios. The conditions for the fixed points are

�
du

d�
= 0 or βu(u

�) = 0 (183)

�
dγ

d�
= 0 or βγ (u�, γ �) = 0. (184)

Equations (183) and (184) determine all possible fixed points in the GLW model and the
extended model. The stability of a fixed point u�, γ � is determined by the property that for small
deviations of the model parameters from their fixed-point values �u = u−u�, �γ = γ −γ �,
the flow has to drive back the parameters to their fixed-point values, independent of the
direction of the deviations. Expanding the β-functions around the fixed point, one obtains

βu(u
� + �u) =

(
∂βu

∂u

) ∣∣∣∣∣
u=u�

(u − u�), (185)

βγ (u� + �u, γ � + �γ ) =
(

∂βγ

∂u

) ∣∣∣∣∣ u=u�

γ=γ �

(u − u�) +

(
∂βγ

∂γ

) ∣∣∣∣∣ u=u�

γ=γ �

(γ − γ �). (186)

The fixed point is stable if the eigenvalues ωi of the matrix(
∂βyj

∂yi

) ∣∣∣∣∣
{y}={y�}

=
((

∂βu

∂u

) ( ∂βγ

∂u

)
0

( ∂βγ

∂γ

))∣∣∣∣∣
u=u�

γ=γ �

(187)
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are positive. The eigenvalues are usually denoted as transient exponents. For the above matrix
(187), the conditions for a stable fixed point read

ωu =
(

∂βu

∂u

) ∣∣∣∣∣
u=u�

> 0, ωγ =
(

∂βγ

∂γ

) ∣∣∣∣∣ u=u�

γ=γ �

> 0. (188)

The transient exponents also determine how fast a fixed point will be approached. The
smaller the transient exponents, the longer non-asymptotic effects are observable in the critical
behaviour of different quantities. A closer examination of the β-functions reveals that for u
two fixed points exist. The Gaussian fixed point u� = 0 and the Heisenberg fixed point
u� = uH with a finite non-zero value uH . From the stability condition for u in (188), it follows
that for d < 4 the Gaussian fixed point is unstable and the Heisenberg fixed point is always
stable. Inserting uH into (184), the resulting equation

βγ (uH , γ �) = 0 (189)

has two solutions, namely γ � = 0 and γ � = γC , where γC is finite. In contrast to u now the
stability of γ � depends on the number n of OP components. In two-loop order, the stability
condition for γ in (188) leads to the following result:

γ � = γC is stable for n = 1. (190)

γ � = 0 is stable for n = 2, 3. (191)

In the above relations, we have considered only values for n which are of physical relevance.
A general comprehensive discussion of the static fixed points in the whole n–d-plane can be
found in [80]. The explicit values of uH and γC depend on how the flow equations and the
β-functions therein are treated. There are two major ways to proceed:

(i) Linearizing the β-functions around the fixed points as done in (185) and (186), inserting
into the flow equations and using ε-expansion. This leads to ε-expanded values for uH and
γC . The resulting flow is only valid in the asymptotic region.

(ii) Calculating the flow from the nonlinear equations and solving them for � → 0 in
order to obtain u� and γ �. The resulting flow is also valid in the non-asymptotic region. Such
nonlinear flow equations can be established by different approaches:

• The straightforward approach is to insert the ζ -functions (179)–(182) into the β-functions
(177) and (178) and treat the flow equations (176) as nonlinear equations. Within this
method, a major problem arises with the flow equation for u in (176). The equation
βu(u

�) = 0, which is in two-loop order a simple quadratic equation, has no real solution
for uH . The corresponding nonlinear flow u(�) would have no real fixed point to approach
in the asymptotic region. The linearized flow equations of (i) lead to an ε-expanded value
for uH . If non-asymptotic effects should be taken into account, a cumbersome ε-expansion
of the flow equation with the correct ε-expanded fixed point should be constructed.

• One possibility to circumvent this problem is to avoid the explicit flow equations but
reconstruct the flows out of experimental quantities [81]. The flow of the parameters
is obtained from experimentally measured thermodynamic quantities by using relations
between thermodynamic derivatives and static vertex functions. Originally, this approach
has been introduced in order to obtain the non-asymptotic static flow in 4He at the
superfluid transition. There the flow of u(�) can be calculated from the experimentally
measured specific heat CP at constant pressure P above and below Tλ, while γ (�) is
determined by u(�) and the specific heat above Tλ. The necessary relations are given
in [78].
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This method has also been applied for an analysis at several phase transitions: (i(a)) at
the superfluid transition in 4He [78]; (i(b)) in 3He–4He mixtures [69], where the flow has
been calculated from the specific heat CPX at constant pressure P and mole fraction X;
(ii(a)) at the gas/liquid critical point [34]; (ii(b)) and in binary liquid mixtures at the plait
point and at the consolute point [16] and (iii) it has also been adapted in [82] to uniaxial
dipolar systems (ferromagnets and ferroelectrics) where the non-asymptotic flow u(�) has
been calculated from the corresponding magnetic or electric susceptibilities above and
below Tc (the critical dimension is dc = 3 and the stable fixed point is u� = 0 in such
systems).

The calculation of the corresponding amplitudes of vertex functions for systems with
an n-component OP has been improved over the time. Amplitude functions of the static
thermodynamic quantities (susceptibility, specific heat, etc) have been calculated within
this approach above [83] and below [84] the critical temperature. A four-loop calculation
of the free energy above and below the critical temperature can be found in [79, 85].
In general resummation procedures are necessary since the loop expansion is only an
asymptotic one (see the next item).

Although this method delivers good results in different systems, it has its limits for
several reasons. Firstly, for the calculation of u(�) experimental results have to be present
with enough accuracy above and below the critical temperature. This is not the case in
many systems. Secondly, all experimentally measured quantities contain a noncritical
background temperature behaviour which is not covered by the critical theory where
only the contributions of the fluctuations to the temperature behaviour are determined.
Therefore, the background contributions should be small in the considered quantities in
order to obtain a reliable flow. Thirdly on the theoretical side the φ4-model is used, which
itself has limited applicability when going into the background.

• Another approach is to improve the expressions for the flow equations by applying
some summation procedure [61, 86–88] with the result that a stable fixed point is
reached. Formerly released calculations of the behaviour of the GLW model in high-
order perturbation expansion are either restricted to Ising like models [89] or use
other renormalization schemes such as normalization conditions or the Callan–Symanzik
method [90–92]. In high-order calculations within the minimal subtraction scheme, the
Borel resummation is applied to the fixed-point values of u and the critical exponents
[93, 94]. In [66, 95], the Borel resummation procedure is applied to the ζ - and β-
functions obtained within minimal subtraction scheme. The result can be written within
the accuracy in the simple form

ζϕ2(u) = 4(n + 2)
u

4!

(
1 − 10

u

4!

)
+ a1

( u

4!

)3
− a2

( u

4!

)4
, (192)

ζϕ(u) = −n + 2

72
u2 + a3

( u

4!

)3
(193)

and

βu(u) = − u

4!
+ 40

( u

4!

)2
(
1 + a4

u
4!

)(
1 + a5

u
4!

) . (194)

The coefficients a1, a2, a3, a4, a5 have been calculated in [66] (see table 2 therein) for
several n. When u(�) is calculated from (194), it is possible to calculate γ (�) either
by using the two-loop expression (181) or the Borel-summed expression (192) for
ζϕ2(u). This leads to a slightly different flow of γ in the noncritical background. The
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u contributions of the function Bψ2(u) = n/2 + O(u2) are negligible [79] at the current
order of calculation, thus we simply can insert Bψ2(u) = n/2 into (178) also in this case.

Effective critical exponents visible in the experimentally accessible temperature region
can be calculated from such a non-asymptotic flow by inserting the flow for special initial
conditions into the corresponding ζ -functions. This might explain differences of measured
critical ‘exponents’ when the measurements have not been made in the asymptotic region.

Dynamics. The critical flow of KCs has the property that it either diverges or goes to zero,
depending on the existence of mode coupling parameters. In dynamic models with at least
one secondary density usually time scale ratios will be introduced, which may stay finite at
the fixed point. For dynamic models with one secondary density (models C, E, F, G, H), one
time scale ratio

w ≡ �

λ
(195)

can be defined. This parameter is of course always positive and its numerical range lies
between 0 and ∞. The corresponding flow equation reads

l
dw

dl
= βw(u, γ,w, F ) with F ≡ g

λ
. (196)

The β-function of the time scale ratio w follows from its definition (195). According to (175),
it can be written as

βw(u, γ,w, F ) = w(−cw + ζ�(u, γ,w, F ). − ζλ(u, γ,w, F )) (197)

In the above equation, the general structures (167) and (169) of the ζ -functions may be inserted
leading to simplifications in different dynamic models. The naive dimension cw depends on
the dynamic model. In models C, E, F, G we have cw = 0 while in model H we have cw = 2.

If one secondary density is present also at most one mode coupling g may exist (models
E, F, G, H). Instead of the mode coupling parameters g or F

f ≡ F√
w′ = g√

�′λ
(198)

will be usually introduced. This has been done in (196) and (197). Which of the two parameters
F or f is more convenient depends on the actual dynamic model and the features considered
therein. For the presentation of explicit results of ζ -functions in some models F it is more
appropriate (see appendix A) while for fixed-point discussions usually f is preferred because
it has finite fixed-point values. In (198), the most general definition with complex w has been
presented. In dynamic models with real � and therefore real w, we have of course w′ = w.
The flow equation of the mode coupling parameter reads

l
dF

dl
= βF (u, γ,w, F ) or l

df

dl
= βf (u, γ,w, f ). (199)

The β-functions can be expressed by ζ -functions using the general structure (175) and the
definitions (199) of the mode coupling parameters. The naive dimension is always cF = ε/2 in
the dynamic models which include secondary densities. Thus, the β-functions can be written
as

βF (u, γ,w, F ) = −F
(ε

2
− ζg(u, γ ) + ζλ(u, γ,w, F )

)
(200)

or

βf (u, γ,w, f ) = −f

(
ε

2
− ζg(u, γ ) +

1

2
ζλ(u, γ,w, f ) +

1

2
Re

[
�

�′ ζ�(u, γ,w, f )

])
.

(201)
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The above β-function is needed in model F where � is complex and ζg(u, γ ) = ζm(u, γ ).
From the renormalization of the mode coupling g discussed in the previous section follows
that in the models E, G, H ζg(u, γ ) = 0. Furthermore, � is a real parameter in these models.
Thus, (200) can be reduced to

βf (u, γ,w, f ) = −f

2
(ε + ζλ(u, γ,w, f ) + ζ�(u, γ,w, f )) (202)

in those cases.
The list of arguments (u, γ,w, F ) in (196)–(202) describes the most general case. Except

for model F all other models include only a subset of parameters because in some of them the
mode coupling F or the static coupling γ may not be present.

In dynamic models with two secondary densities (models C′, E′, F′, H′), three time scale
ratios

w1 ≡ �

λ
, w2 ≡ �

µ
, w3 ≡ L√

λµ
(203)

may exist. For complex � the time scale ratios w1 and w2 are also complex quantities. Quite
analogous to w, the numerical values of the real part range from 0 to ∞. The time scale ratio
w3 determines the dissipative coupling between the two secondary densities. Its numerical
values lie in a restricted range. Considering the square, the lower border is w2

3 = 0, which is
the case if the dissipative processes of the two secondary densities decouple. The other border
value is w2

3 = 1 describing total coupling in the sense that the dissipation of two secondary
densities is determined only by one density. In the totally coupled case a transformation to
new secondary densities can be found where the first one fulfils a dynamic equation with
a diffusion term while the dynamics of the second one is determined by a time-reversible
equation without any dissipation. The values of w2

3 cannot exceed 1 because the matrix (122)
of dynamic coefficients has to be positive definite.

Models with two secondary densities may also have two mode coupling parameters (model
F′) which are defined as

F1 ≡ g1

λ
or f1 ≡ F1√

w′
1

= g1√
�′λ

, (204)

F2 ≡ g2

µ
or f2 ≡ F2√

w′
2

= g2√
�′µ

. (205)

The flow equations for the time scale ratios are analogous to (196)

l
dwi

dl
= βwi

(u, γ, {wj }, {Fj }) (206)

where i = 1, 2, 3 and with β-functions

βw1 = w1
(−cw1 + ζ� − ζλ

)
, (207)

βw2 = w2
(−cw2 + ζ� − ζµ

)
, (208)

βw3 = w3
(−cw3 + ζL − 1

2 (ζλ + ζµ)
)
. (209)

For simplicity, we dropped the argument list (u, γ, {wi}, {Fi}) in the above equations. The
naive dimensions are cw1 = cw2 = cw3 = 0 in models C′, E′, F′, while in model H′ one has
cw1 = 2, cw2 = 0 and cw3 = 0. The flow equations for the mode coupling parameters are

l
dFi

dl
= βFi

(u, γ, {wj }, {Fj }) or l
dfi

dl
= βfi

(u, γ, {wj }, {fj }) (210)
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where i = 1, 2. The corresponding β-functions read

βF1 = −F1

(ε

2
+ ζλ

)
, (211)

βF2 = −F2

(ε

2
− ζg2 + ζµ

)
. (212)

or

βf1 = −f1

2

(
ε + ζλ + Re

[
�

�′ ζ�

])
, (213)

βf2 = −f2

2

(
ε − 2ζg2 + ζµ + Re

[
�

�′ ζ�

])
. (214)

Only the second secondary density has a static coupling γ to the OP therefore we have always
ζg1 = 0, which is already taken into account in (211) and (213). From the renormalization of
the mode coupling parameters in section 7.2 follows that ζg2 is either 0 or ζm in the different
dynamic models. Explicit expressions for dynamic ζ -functions in two-loop order are presented
in appendix A.

An exception of the considerations so far is model J (Heisenberg ferromagnet). This
model includes a conserved OP with a kinetic coefficient � and a mode coupling g. No
secondary density is present. Thus, there is only one mode coupling parameter and we denote
it by

F ≡ g

�
. (215)

The naive dimension of F is cF = (6 − d)/2 instead of (4 − d)/2 in all other models. The
corresponding β-function reads

βF (u, F ) = −F

(
6 − d

2
− ζg(u) + ζ�(u, F )

)
. (216)

From (130) it immediately follows ζg(u) = ζϕ(u)/2 leading to

βF (u, F ) = −F

(
6 − d

2
− 1

2
ζϕ(u) + ζ�(u, F )

)
. (217)

The static flow equations (176) and dynamic flow equations (196)–(210) describe the
critical behaviour of the corresponding parameters. Starting from initial values yi(�0),
the asymptotic critical region can be reached by integrating the flow equations and performing
the limit � → 0. The flow parameter can be related by means of a so-called ‘matching
condition’ to the correlation length ξ−2(t), depending on the relative temperature t =
(T − Tc)/Tc (Tc denotes the critical temperature of the considered system), to the wave
vector k and the frequency ω. This matching condition is chosen in such a way that the
integral expressions of the amplitudes of the vertex functions remain finite in the asymptotic
critical limit. The matching condition defines generally a path �(t, k, ω) in the ω–k–ξ−2-space.
But in most cases only the paths in a subspace are needed. These are for instance as follows:

• k = 0, ω = 0. This path is used to calculate the critical temperature behaviour of quantities
such as specific heat, susceptibility, thermal conductivity, mass diffusion coefficient or
thermodiffusion ratio. All functions depend only on ξ−2 and the matching condition reads

ξ−2(t)

(κ�)2
= 1. (218)
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From the matching condition, a function �(t) is obtained which transforms all model
parameters yi(�(t)) to functions of the relative temperature. In most cases, the asymptotic
correlation length

ξ(t) = ξ0t
−ν (219)

is used and κ = ξ−1
0 has been chosen. Then, the matching condition (218) reduces to

�(t) = tν . But for ξ(t) also any other function which includes a more realistic background
behaviour may be used in (218) leading to non-asymptotic effects in the functions yi(�(t)).

• ξ−2 = 0, ω = 0. This path is taken for the critical k-dependence of shape functions
or the characteristic frequency (see the next section) when only their k-dependence is of
interest. The amplitude functions, which are only a function of k in this case, stay finite
in the critical limit with the matching condition

k

κ�
= 1 (220)

which relates the flow parameter � to the wave vector k. Inserting κ = ξ−1
0 we obtain

�(k) = ξ0k and all model parameters become functions yi(�(k)).
• ξ−2 = 0, k = 0. Considering critical sound propagation, the critical frequency

dependence of the sound velocity and sound attenuation is of interest. Moving along this
path, all amplitudes are functions of ω and they stay finite with the matching condition

ω

2�′(�)(κ�)2+a
= 1 (221)

leading to a function �(ω). The above relation is written in a general form. For systems
with a real OP kinetic coefficient, we have �′(�) = �(�). The parameter a is equal to 0
for a non-conserved OP (model F/F′ for instance) and 2 for a conserved OP (model H/H′

for instance). With the flow parameter �(ω), the model parameters yi(�(ω)) are functions
of the frequency.

In cases where more then one variable is different from zero, the matching condition is
generalized and may depend on the classical dynamical critical exponent z (for an example
see (360)).

7.5. Dynamic stability

The stability of the dynamic fixed point follows from the dynamic stability matrix obtained in
the same way as the static stability matrix (187). One has to expand around the fixed point. A
dynamic fixed point is then stable if the eigenvalues of the stability matrix (we consider as an
example the case of one mode coupling f and one time scale ratio w)(

∂βyj

∂yi

) ∣∣∣∣∣
{y}={y�}

=
(( ∂βf

∂f

) (
∂βw

∂f

)( ∂βf

∂w

) (
∂βw

∂w

))∣∣∣∣∣ u=u�,γ=γ �

w=w�,f =f �

(222)

are positive. These eigenvalues which give the dynamical transient exponents are

ω± = 1

2

(
∂βf

∂f
+

∂βw

∂w

)

×
(

1 ±
√

1 − 4

(
∂βf

∂f

∂βw

∂w
+

∂βw

∂f

∂βf

∂w

)/(
∂βf

∂f
+

∂βw

∂w

)2
)∣∣∣∣∣ u=u�,γ=γ �

w=w�,f =f �

.

(223)
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It is a general feature of the eigenvalue ω− that for w� → 0 one finds ω− → 0 if the
β-functions are well behaved. This is the case for all models considered here (see the explicit
discussion for the SSS model, section 15.1). This feature ensures that the existence boundary
of the fixed point with finite w� agrees with the stability boundary of the fixed point with finite
w� and the stability boundary of the fixed point with w� = 0. This guarantees that dynamic
scaling holds with well-defined dynamical critical exponents (see section 8.3) in the d–n-plane
(so-called ‘phases’; see especially the discussion for model C and the SSS model).

8. Dynamic scaling and asymptotic exponents

8.1. Scaling of the dynamic correlation function

The dynamic scaling assumption states [96] that the dynamic correlation function C̊ϕϕ+(ξ, k, ω)

of the OP introduced in (71) is a homogeneous function of its arguments in the asymptotic
region. It can be written in the form

C̊ϕϕ+(ξ, k, ω) = C̊
(s)
ϕϕ+(ξ, k)

ωc(ξ, k)
F
(

ω

ωc(ξ, k)
, kξ

)
(224)

with

C̊
(s)
ϕϕ+(ξ, k) = 〈ϕ0(k)ϕ+

0 (−k)
〉
c
(ξ) = [�̊(s)

ϕϕ+(ξ, k)
]−1

(225)

as the static correlation function (see also equation (31)) and F the dynamic shape function.
The scaling form of the static correlation function is

C̊
(s)
ϕϕ+(ξ, k) = k−2+ηg(kξ). (226)

The characteristic frequency ωc (for which we take the half width at half height of the dynamic
correlation function) is also a homogeneous function of k. Dynamic critical scaling assumes

ωc(ξ, k) = Aφkzϕf (kξ) (227)

with zϕ as the only new dynamic critical exponent. The frequency is measured in an appropriate
time scale. The shape function F(y, x) fulfils the relations∫

dy F(y, x) = 2π and F(1, x) = 1

2
F(0, x) (228)

where the scaling variables

x = kξ, y = ω

ωc(ξ, k)
(229)

have been introduced. The large y-behaviour of F at Tc (ξ−1 = 0) is proportional to y−υϕ .
The limiting behaviour of the dynamic correlation function (224) for k → 0 is different

for conserved and non-conserved OPs. In the case of a conserved OP the dynamic correlation
function has to be proportional to k2, while in the non-conserved case it goes to a constant
value. Inserting the scaling forms (226) and (227) into (224), one obtains for large y

k−2+η

kzϕ

( ω

kzϕ

)−υϕ ∼ k2 for a conserved OP, (230)

k−2+η

kzϕ

( ω

kzϕ

)−υϕ ∼ k0 for a non-conserved OP. (231)
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Table 2. Dynamical critical exponent ζϕ and ζm of the dynamic OP and secondary density shape
function in different models in d = 3 calculated from the dynamic critical exponents zϕ and zm

(see table 3) according to (232) and (239).

Model Remark υϕ υm

A 4−(1−c)η
2+cη

∼ 2 –

B 2 –

C n = 1 4+α/ν−η
2+α/ν

∼ 1.89 4+α/ν
2+α/ν

∼ 1.86

C n > 1 4−(1−c)η
2+cη

∼ 2 2

E Scaling FP 7−2η
3 ∼ 2.3 7−2η

3 ∼ 2.3

G 7−2η
3 ∼ 2.3 7−2η

3 ∼ 2.3

H 8−2η−xλ
4−η−xλ

∼ 2.3

J 13−3η
5−η

∼ 2.6 –

Therefore, the exponent υϕ has to fulfil the relation

υϕ = zϕ + 4 − η

zϕ

for a conserved OP, (232)

υϕ = zϕ + 2 − η

zϕ

for a non-conserved OP. (233)

If a secondary density is present, the corresponding dynamic correlation function C̊mm(ξ, k, ω)

(see (78) for a single density βi = β) fulfils a scaling relation analogous to (224). One has

C̊mm(ξ, k, ω) = C̊(s)
mm(ξ, k)

ω
(m)
c (ξ, k)

Fm

(
ω

ω
(m)
c (ξ, k)

, kξ

)
(234)

where Fm is the corresponding shape function. The function

C̊(s)
mm(ξ, k) = 〈m0(k)m0(−k)〉c(ξ) = [�̊(s)

mm(ξ, k)
]−1

(235)

is the static correlation function (see also equation (52)) of the secondary density. The scaling
form of the static correlation function is simply

C̊(s)
mm(ξ, k) = gm(kξ). (236)

The characteristic frequency ω(m)
c fulfils a scaling relation

ω(m)
c (ξ, k) = kzmfm(kξ) (237)

analogous to (227). Assuming that the large y-behaviour of the shape function Fm at Tc is
proportional to y−υm , we obtain the relation

1

kzm

( ω

kzm

)−υm ∼ k2 for a conserved OP (238)

when (236) and (237) are inserted into (234). The right-hand side of (238) follows from the
fact that the secondary densities are always conserved. The exponent υm is therefore

υm = zm + 2

zm

. (239)
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8.2. The static critical exponents

GLW model. The connection between the fixed-point values of the static ζ -functions of the
GLW model and the static critical exponents is well established [59, 75] and will not be
repeated comprehensively in this review. In the current notation, the anomalous dimension η

appearing in the scaling form of the static OP correlation function (see equation (226)) is

ζ �
ϕ ≡ ζϕ(u�) = −η. (240)

The critical exponent ν of the correlation length (219) is defined by the relation

ζ �
ϕ2 ≡ ζϕ2(u�) = 2 − 1

ν
. (241)

The remaining static exponents are then determined by familiar scaling relations [59]. The
asymptotic behaviour, above Tc, of the specific heat C+(t) (t = |T − Tc|/Tc) and the
susceptibility χ+(t) is

C+(t) = C0t
−α, χ+(t) = χ0t

−γ . (242)

Note that the critical exponent γ above should not be confused with the renormalized static
coupling γ of the extended static functional in (107). The exponents α and γ are related to η

and ν by

2 − α = dν, γ = (2 − η)ν. (243)

Approaching the critical point Tc from below, the asymptotic critical behaviour of the OP is

ϕ(t) = ϕ0|t |β (244)

where the exponent β fulfils the relation

α + 2β + γ = 2. (245)

Finally moving along the critical isotherm to the critical point, the external field J conjugated
to the OP, which is for instance the magnetic field in the case of magnets or the chemical
potential in the case of fluids, behaves like

J (ϕ) ∼ ϕδ. (246)

The exponent δ can be calculated from β and γ by

β(δ − 1) = γ. (247)

Thus, all static exponents can be determined from η and ν or ζ �
ϕ and ζ �

ϕ2 correspondingly.

Extended static model. If at least one scalar secondary density is present, the additional
ζ -function ζm is also related to static critical exponents. Of course, these exponents cannot
be new and independent because the whole static critical behaviour is contained in the GLW
model. The stable fixed point γ �, which depends on n as can be seen from (190) and (191),
determines how ζ �

m is related to critical exponents. We obtain

ζ �
m = α

2ν
for n = 1 (γ � �= 0), (248)

ζ �
m = 0 for n = 2, 3 (γ � = 0). (249)
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8.3. The dynamic critical exponent z

Order parameter. In order to connect the dynamic critical exponent zϕ with the ζ -functions
introduced above, we consider the critical frequency ωc(ξ, k) in (227) near Tc. The asymptotic
form at Tc according to scaling is

ωc(∞, k) = Aϕkzϕ . (250)

On the other hand, for the dynamic models introduced above the characteristic frequency can
be written as

ωc(∞, k) = �(�)k2+a (251)

where the flow parameter � is connected to the wave vector via the matching condition � = k/k0

(220) and a = 0 for non-conserved and a = 2 for conserved OP. �(�) is determined by the
flow equation

�
d�

d�
= �ζ�. (252)

In the asymptotic region, it is assumed that the static and dynamic model parameters have
reached their fixed-point values, thus we can write ζ �

� ≡ ζ�({y�
i }). Inserting into (252) the

asymptotic solution of the flow equation leads to

�(�) = �(�0)�
ζ �
� . (253)

Inserting this solution into (251) and using the matching condition (220), one finds the
asymptotic behaviour of the critical frequency as

ωc(∞, k) ∼ �(�0)k
2+a+ζ �

� . (254)

Comparing (250) and (254), one concludes that the dynamic critical exponent zϕ of the OP is

zϕ = 2 + a + ζ �
�. (255)

Inserting the relation between the RCs (115) into the definition of the ζ -functions, (162) ζ�

can be expressed as

ζ �
� = 1

2ζ �
ϕ − 1

2ζ �
ϕ̃+ + ζ

(d)�
� . (256)

Secondary density. If at least one secondary density is present, a corresponding critical
frequency ω(m)

c can be introduced (see equation (234)). According to (250), the asymptotic
behaviour of the critical frequency is

ω(m)
c (∞, k) = Amkzm. (257)

From dynamic models on the other hand the characteristic frequency can be written as

ω(m)
c (∞, k) = λ(�)k2. (258)

The flow equation for the kinetic coefficient λ reads

�
dλ

d�
= λζλ (259)

with the asymptotic solution

λ(�) = λ(�0)�
ζ �
λ . (260)

Inserting (260) into (258) leads to

ω(m)
c (∞, k) ∼ λ(�0)k

2+ζ �
λ (261)
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where again the matching condition (220) has been used. Within theory, the dynamic critical
exponent zm is therefore

zm = 2 + ζ �
λ . (262)

From relation (119), it follows for ζλ

ζλ = 2ζm + ζ
(d)
λ . (263)

Using this relation at the fixed point, the dynamic exponent zm can be written as

zm = 2 + 2ζ �
m + ζ

(d)�
λ . (264)

Strong dynamical scaling states that there is only one dynamic exponent z. Thus in all
correlation functions (of the OP and the other slow densities), the characteristic time scales
with this one dynamic exponent z. Therefore, one has the relation between the differently
defined exponents zϕ = zm corresponding to a relation of the ζ -functions at the fixed point.
Weak dynamic scaling allows different time scales for the OP and the other conserved densities.
Thus, one has in this case at least two different dynamic exponents zϕ and zm. There may be a
decoupling of the OP from a secondary density. Then, the decoupled density has no influence
on the asymptotics and its characteristic time scale is trivial. The dynamic exponents of the
decoupled densities are their classical ones, i.e. z = 2 since they are conserved. This region is
called the decoupled region. Strong-scaling, weak-scaling and decoupled regions are related
to different stable fixed points as will be shown in the following.

In contrast to the static critical exponents, which can only be determined at least in a loop
expansion with a subsequent ε-expansion or d = 3 calculation, the dynamic exponents of
most dynamic models can be derived exactly by using general arguments. In the following,
we will consider the different models explicitly.

8.4. Dynamic exponent z of models without mode coupling terms

In models without mode coupling parameters gi , or Fi(fi) correspondingly, the dynamic RCs
of the KCs are simply 1 as discussed in section 7.2. Therefore, the corresponding ζ -functions
vanish. That is

ζ
(d)
� = 0, ζ

(d)
λ = 0. (265)

The dynamic exponents (256) and (264) reduce to

zϕ = 2 + a + ζ �
� = 2 + a + 1

2ζ �
ϕ − 1

2ζ �
ϕ̃+ (266)

and

zm = 2 + ζ �
λ = 2 + 2ζ �

m. (267)

Model A. This model includes only a non-conserved OP thus we have a = 0. The function
ζϕ̃+(u, �) is nontrivial and can only be calculated in loop expansion. In two-loop order, one
can write ζ �

� = ζ
(A)
� (u�) = cη in both the real model A and the complex model A� because

�′′� = 0. The coefficient c depends on the order of the loop expansion. Although separating η

is trivial, it turns out that c is independent of n at least up to three-loop order (see [97, 98] and
section 9). In two-loop order, ζ

(A)
� (u) is given in appendix A. Inserting into (266), a dynamic

critical exponent

zϕ = 2 + cη (268)

is obtained.

Model B. This model includes only a conserved OP thus we have a = 2. From relation (110),
it immediately follows ζ �

ϕ̃+ = −ζ �
ϕ . This leads to a dynamic exponent

zϕ = 4 + ζ �
ϕ = 4 − η (269)
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where in the last equality (240) has been used. In contrast to model A, this result is valid for
all orders of loop expansion. The dynamic exponent is determined by statics.

Model C. A more complicated situation is found in model C where a non-conserved OP
(a = 0) is coupled in the static functional to a conserved secondary density (energy). The
critical dynamic exponents depend on the stable fixed points of the static coupling γ and the
time scale ratio w. From (197), the relation for the fixed point of w follows as

βw(u�, γ �, w�) = 0 = w�(ζ �
� − ζ �

λ ). (270)

For this equation several solutions are possible.
(i) w� �= 0: then the relation ζ �

� = ζ �
λ must hold which is only possible if also γ � �= 0.

From ζ �
λ = 2ζ �

m and (248) follows

ζ �
� = ζ �

λ = 2ζ �
m = α

ν
. (271)

The dynamical critical exponents (265) and (267) are then

zϕ = zm = 2 +
α

ν
. (272)

The critical frequencies are getting equal in the asymptotic region therefore the fixed point
γ � �= 0, w� �= 0 is called the scaling fixed point, which is stable for n = 1.

(ii) w� = 0: ζ� in model C has the property ζ�(u, γ,w = 0) = ζ
(A)
� (u) (see appendix A).

At the fixed point, we have therefore ζ �
� = ζ

(A)
� (u�) = cη. The critical dynamical exponent

for the OP,

zϕ = 2 + cη, (273)

is identical to model A. zm depends on the fixed-point value of γ due to (248) and (249).
Inserting into (267) leads to

zm =
{

2 +
α

ν
for γ � �= 0,

2 for γ � = 0.
(274)

The fixed point w� = 0, γ � �= 0 is denoted as weak-scaling fixed point3, while w� = 0, γ � = 0
is the decoupling fixed point. For the integer OP dimensions n = 2, 3, the weak-scaling fixed
point is stable. A comprehensive discussion of the stability regions of model C in the whole
n–d-plane is given in [80].

8.5. Dynamic exponent z of models with mode coupling terms

In models which include mode coupling parameters, the purely dynamic ζ -functions ζ
(d)
� and

ζ
(d)
λ are different from zero and give a contribution to the dynamic exponents. Apart from

model F, all models of this type (models E, G, H, J) do not contain a static coupling γ , thus we
have ζm = 0 in these cases. The OP in model F has a component number n = 2. From (249),
we know that the stable fixed point is γ � = 0 for n = 2. Thus in model F the relation ζ �

m = 0
is valid at the fixed point, which means that γ does not influence the fixed-point discussion.
Therefore in all models with mode couplings, the dynamic critical exponent of the secondary
densities is

zm = 2 + ζ �
λ = 2 + ζ

(d)�
λ . (275)

3 At the strong-scaling fixed-point dynamic scaling involves only one dynamic exponent z whereas at the weak-scaling
fixed point two different dynamic exponents are necessary.
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Models E, G, SSS, DP. All models include a non-conserved OP (a = 0) and a conserved
secondary density. The equations for the fixed point have the same structure and will be
discussed together leading to the same critical dynamic exponents. The dynamic fixed points
are determined by the equations

βw(u�,w�, f �) = 0 = w�
(
ζ �
� − ζ

(d)�
λ

)
(276)

and

βf (u�, w�, f �) = 0 = −f �

2

(
ε + ζ �

� + ζ
(d)�
λ

)
. (277)

The fixed point f � �= 0 is stable therefore from (277) follows immediately

ζ �
� + ζ

(d)�
λ = −ε. (278)

The dynamical critical exponent now depends on the fixed point w�.
(i) w� �= 0: at the scaling fixed point, the ζ -functions fulfil the relation

ζ �
� = ζ

(d)�
λ (279)

which follows from (276). Inserting into (278) leads to

ζ �
� = ζ

(d)�
λ = −ε

2
. (280)

The critical dynamic exponents are obtained by inserting (280) into (255) and (275). This
gives

zϕ = zm = d

2
(281)

which is an exact result valid in all orders of loop expansion.
(ii) w� = 0: at the weak-scaling fixed point nothing can be concluded from (276), thus

only relation (278) is valid from which a weak-scaling fixed-point value f � = fWSC may be
calculated in every order of loop expansion. Inserting w� = 0, f � = fWSC into the ζ -functions
of (255) and (275) leads to loop expanded critical dynamic exponents (see [99, 100]).

One can define the stability exponent ωWSC
w = ζ �

� − ζ
(d)�
λ at the weak-scaling fixed point.

Then, using (280) the critical dynamic exponents read [4]

zϕ = d

2
+ ωWSC

w

/
2, zm = d

2
− ωWSC

w

/
2. (282)

Thus, the two dynamic exponents differ by the correction exponent. Near the stability
borderline between the scaling and the weak-scaling fixed point ωWSC

w is very small and
w� is very small or zero. Both situations lead to the same effects in the critical behaviour of
dynamic quantities. The most prominent effect is the non-universal behaviour of the universal
amplitude of the thermal conductivity and second sound damping at the superfluid transition
(see the discussion below).

Model F. As mentioned at the beginning of this section, the static coupling γ does not influence
the fixed-point discussion in this model compared to models E, G due to γ � = 0. The only
difference remaining to model E is then the imaginary part �′′ present in this model. The only
contributions to the imaginary part of ζ� are proportional to w′′, also present in the complex
model C�, and from igγ terms. At the fixed point γ � = 0, the latter contributions vanish and
the imaginary part of ζ� is only generated by w′′ like in model C�. From there it is known that
w′′� = 0. Thus, model F reduces completely to model E at the fixed point. As a consequence,
also the critical dynamic exponents are like in model E.

Model H. The dynamic equations include a conserved OP (a = 2) and a conserved secondary
density. The time scale ratio w = �/λ has a naive dimension −2 and is therefore irrelevant.
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Table 3. The dynamical critical exponent for different dynamic models. The expression c, the
transient ωWSC

w and the exponent of the shear viscosity xη have to be calculated from a dynamical
loop expansion. Exponents η, α and ν are the static critical exponents of the correlation function
at the critical point, of the specific heat and of the correlation length, respectively.

Model Name zOP (in d = 3) zm

Relaxation A 2 + cη –
Diffusion B 4 − η –
Relaxation C 2 + α/ν (n = 1) 2 + α/ν (n = 1)

Relaxation C 2 + cη (n � 2) 2 (n � 2)

Relaxation C′ Same as model C Same as model C
Symmetric planar m E 3/2 or 3/2 − ωWSC

w /2 3/2 or 3/2 + ωWSC
w /2

E′ Same as model E Same as model E
Asymmetric planar m F Same as model E Same as model E
F′ Same as model E Same as model E
Antiferromagnet G 3/2 –
Fluid H 3 + xη 2 − xη

Mixture H′ 3 + xη 2 − xη

Ferromagnet J 1/2(5 − η) –
DP model DP 3/2 or 3/2 − ωWSC

w /2 3/2 or 3/2 + ωWSC
w /2

Thus, only a weak-scaling fixed point w� = 0 exists in this model. The only remaining
dynamic fixed-point equation is equal to (277) leading to the same relation

ζ �
� + ζ

(d)�
λ = −ε (283)

as in (278). The difference now is the conserved OP from which ζ �
ϕ̃+ = −ζ �

ϕ = η follows (see

also model B). This gives ζ �
� = −η + ζ

(d)�
� . Inserting into (283) leads to the relation

ζ
(d)�
� + ζ

(d)�
λ = −(ε − η). (284)

This relation is consistent with the exponent relation

xλ + xη = ε − η (285)

found in [101] where xλ is the dynamical critical exponent of the thermal conductivity (denoted
by λ therein) and xη accordingly of the shear viscosity (denoted by η in this reference). The
field-theoretic functions in the present approach are related to the exponents introduced in
[101] by the relations ζ

(d)�
� = −xλ and ζ

(d)�
λ = −xη. These two dynamic exponents have to

be calculated in loop expansion in order to determine the dynamic exponents

zϕ = 4 − η − xλ = d + xη, zm = 2 − xη. (286)

In the second equality of the first equation relation (285) has been used.

Model J. This model includes only a conserved OP (a = 2) without any secondary density.
From (217) follows at the fixed point

βF (u�, F �) = 0 = −F�

(
6 − d

2
− 1

2
ζ �
ϕ + ζ �

�

)
. (287)

For F� �= 0, one gets from the above equation

ζ �
� = −6 − d

2
+

1

2
ζ �
ϕ = −6 − d + η

2
. (288)

Inserting this into (255), the critical dynamic exponent reads

zϕ = 2 + d − η

2
. (289)
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The critical exponent z has been derived directly above Tc (see also [102]) without using
dynamic scaling and the propagating mode below Tc [96]. Note that in all cases the naive
dimension of the mode coupling F is (6 − d)/2. Thus, the static upper borderline dimension
dc = 4 for the irrelevance of the static coupling u is different from dc = 6 for the irrelevance
of the mode coupling F.

We may conclude that in many cases the asymptotic dynamical power laws can be found
without explicit perturbational calculations, which are necessary for the relaxational model A,
the liquid–gas critical point model H and for the superfluid transition described by model E
or F if the weak-scaling fixed point is stable (which seems to be the case). As we shall see
below perturbational calculations are necessary anyway for calculating dynamical correlation
functions or the crossover from background behaviour to the asymptotic behaviour of transport
coefficients.

9. Model A (relaxational dynamics)

Model A is the simplest dynamical model which may apply to uniaxial magnetic systems
[20, 50]. It describes the dynamics of a non-conserved OP relaxing to an equilibrium fixed by
the static functional H of the GLW model (24). The most general form, denoted as model A�

in the following, includes a complex OP �ϕ0 with n/2-components, which fulfils the equations
[97]

∂ �ϕ0

∂t
= −2�̊

δH
δ�ϕ+

0

+ �θϕ,
∂ �ϕ+

0

∂t
= −2�̊+ δH

δ�ϕ0
+ �θ+

ϕ (290)

with a complex relaxation rate �̊ = �̊′ + i�̊′′ (a real OP leads necessarily to a real relaxation
rate). The field-theoretic ζ -function ζ�(u, �) of model A� is complex. Although the model
has been treated in [97], no explicit result can be found therein. The reason is that the real
and imaginary parts of the corresponding functions have been calculated separately which is a
cumbersome procedure. A two-loop calculation with the complex relaxation rate is relatively
simple and can be found in appendix A (see (A.1)). The fixed-point value of the imaginary
part �̊′′ is zero and the asymptotic behaviour of model A� is identical to model A described by

∂ �φ0

∂t
= −�̊

δH
δ�φ0

+ �θφ (291)

with a real n-component OP �φ0 and a real kinetic coefficient �. The static functional H (24)
has to be taken for �ϕ0 = �ϕ+

0 = �φ0.
The dynamical critical exponent zϕ for model A is usually written in the form zϕ = 2 + cη

(268) with the static exponent η in three-loop order and ε-expanded

η = n + 2

2(n + 8)
ε2

(
1 +

−n2 + 56n + 272

4(n + 8)2
ε

)
. (292)

For the expansion up to fifth-loop order see [60], for the Ising model (n = 1) a numerical
estimate η = 0.0364(5) has been given [103] where summation techniques have been used.
The dynamical part c of z reads up to three-loop order in ε-expansion [98]:

c = 0.726(1 − 0.1885ε). (293)

A surprising feature of this decomposition in the ε-expansion is the independence of the
dynamic factor c from n. The n-dependence is up to this order only contained in the static
exponent η. Taking the result for c at ε = 1 together with the best value for η from above leads
to z = 2.021 for the Ising model. Earlier results [97] contained an error. Comparing with
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Table 4. Different values for the dynamical critical exponent zϕ for the three-dimensional Ising
model for which the models apply.

Reference zϕ Method

[50] 2.121 Two-loop ε-expansion
[98] 2.021 Three-loop ε-expansion
[105] 2.017 Four loop in d = 3 Padé Borel summed
[106] 2.017 Padé estimation
[107] 2.04 ± 0.03 MC simulation
[108] 2.032 ± 0.004 MC simulation
[109] 2.10 ± 0.02 MC simulation

the expansion given in footnote 4 the ε-expanded result of (293), it is in agreement with the
1/n-expansion. In contrast, the earlier result of [97] does not agree with the 1/n-expansion.
Within the fixed dimension approach z has been calculated for n = 1 in three-loop [104]
and four-loop order [105]. The question of the n-dependence has not been touched in this
four-loop approach.

In order to improve the value of z for the Ising model (n = 1) in d = 3, an interpolation
between the value obtained from an ε-expansion of the interface dynamics and the two-loop
order result has been suggested [106]

z = 2 +
6c(4 − d)2(d − 1)

(2 + 60c) − (4 + 3c)d + (2 − 3c)d2
. (294)

The value obtained in this way is in very good agreement with the four-loop calculation
mentioned above (see also table 4).

Recently, the structure factor of the Ising model has been calculated in two-loop order
[109]. As expected, only a slight deviation from the Lorentzian shape valid for the Gaussian
model is found. In order to get the shape function in its scaling variables, one has to define the
characteristic frequency ωc or time scale τc. Several definitions are possible like half width at
half height or a median frequency (see equation (3.19) in [1] for ωc) or different autocorrelation
times (see equations (13) or (14) in [109]). All these characteristic frequencies have the same
asymptotic scaling behaviour as (251).

The theoretical results may be compared with computer simulations (for a review see
[110]) which lead to estimates for the dynamical critical exponent z. The values reported in
[111, 112] were smaller than 2, thus below the borderline value z = 2 for n � 1 according
to (294) (see figure 1 in [106]). Later in simulations for larger systems values larger than 2
were found [107, 109, 113]. In table 4, we list the values for the dynamical critical exponents
estimated by different methods for the three-dimensional Ising model. More values for z

calculated by other methods may be found in [114] (see table 3 there).
It was argued [115] that the dynamical critical behaviour described by model A is

stable with respect to all dynamical perturbations, including those of non-equilibrium nature,
provided the dynamics is (i) local, (ii) does not conserve the order parameter or any other

4 The lowest order of the 1/n-expansion reads [50]

c = 4

4 − d

(
dB(d/2 − 1, d/2 − 1)

8
∫ 1/2

0 dx[x(2 − x)]d/2−3
− 1

)
.

This also corrects a misprint in [1].
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secondary density and (iii) respects the discrete symmetry of the equilibrium Ising model.
Later it was shown that the last condition is not necessary [116].

We shortly mention that model A has also been considered below Tc [117] where the
singular behaviour of the Goldstone mode has to be treated properly.

10. Models B and D (diffusive dynamics)

If the OP is a conserved quantity, the irreversible dynamics is determined by diffusion (see the
discussion in section 3). Assuming an n-component real OP �φ0 the dynamic equation reads

∂ �φ0

∂t
= �̊∇2 δH

δ�φ0

+ �θφ. (295)

Due to the conservation property relation (110) holds (no new dynamic pole terms in �̊ϕϕ̃+

of the vertex function (72)). The dynamic critical exponent zϕ remains the one found in
conventional theory (see (269)),

z = 4 − η. (296)

If there is another conserved density beside the OP, it might be considered as belonging to
the set of slow variables (model D). It is easy to show that the static coupling to such a density
is irrelevant and the critical dynamical behaviour is determined by the fixed point of model B.

This might be different if one abolishes the local conservation property, keeps the global
conservation and allows long-range transport for the conserved density [51, 118]. Under such
a case Fick’s law is no longer valid. Then in Fourier space the generalized equation of motion
would read (

1

λ̊kσ
+

1

�̊

)
∂ �φ0(k, t)

∂t
= δH

δ�φ0(k, t)
+ �θφ(k, t), (297)

where a value of σ �= 2 and σ > 0 simulates non-locality and ensures conservation,
respectively. Recently, a system of two dynamic equations of this type with a static functional
H = Hϕ + H(1s)

m (see (38) and (40)) has been considered [119]. This amounts to adding an
equation for a scalar density similar to (297)(

1

λ̊kµ
+

1

�̊

)
∂m0(k, t)

∂t
= δH

δm0(k, t)
+ θm(k, t). (298)

Under certain conditions, a ‘true model-D-like region’ exists in the σ–µ-space where σ and
correspondingly µ are the exponents characterizing the non-locality of the OP and the coupling
secondary density.

11. Model C and generalizations (model C′)

11.1. Model C∗/C and its ‘phase diagram’

In order to study the effect of energy conservation on the critical behaviour of a non-conserved
OP, the basic equations of motion were set up in [20]. The model contains in addition to the
OP equation (290) of model A� a model B-like equation for a secondary density m0, which
may be the energy density. So, we have for model C�

∂ �ϕ0

∂t
= −2�̊

δH
δ�ϕ+

0

+ �θϕ,
∂ �ϕ+

0

∂t
= −2�̊+ δH

δ�ϕ0
+ �θ+

ϕ . (299)
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∂m0

∂t
= λ̊∇2 δH

δm0
+ θm (300)

with an n/2-component complex OP �ϕ0 and a complex kinetic coefficient �̊. The coupling of
both equations is accomplished by a coupling γ̊ in the static functional H = Hϕ + H(1s)

m (see
(38) and (40)). The dynamical parameter of interest is the time scale ratio w = �/λ = w′ +iw′′

which is also a complex quantity. The explicit two-loop expressions of the ζ -functions ζ�

and ζλ are presented in (A.8) and (A.10). It turns out [80] that the fixed-point value of the
imaginary part w′′ of the time scale ratio is always zero leading to an asymptotic behaviour
identical to model C. However, the imaginary generalization is an important limiting case of
model F (see below). Model C is restricted to a real n-component OP �φ0 and a real kinetic
coefficient �̊. The dynamic equations (299) reduce to

∂ �φ0

∂t
= −�̊

δH
δ�φ0

+ �θφ. (301)

The dynamic equation for the secondary density (300) remains unchanged. In order to discuss
the fixed points and the asymptotic critical behaviour of this model, it is convenient to introduce
beside the time scale ratio w = �/λ, which is now a real quantity, the parameter

ρ = w

1 + w
. (302)

It maps the values 0 � w � ∞ to the finite interval 0 � ρ � 1. Three types of fixed-point
values have been found [20] in one-loop order w� = 0, wc,∞ (or ρ� = 0, ρc, 1) corresponding
to a situation where the OP time scale and the energy density time scale differ (weak scaling),
where both have the same time scale (strong scaling) and where the conserved density is slower
than the OP (anomalous fixed point with breakdown of scaling). It was not clear if and where
in the d–n-plane the infinite fixed point is stable. Subsequent two-loop considerations [120]
and calculation [121] could not clarify the situation, although a reestablishment of scaling in
the anomalous region was found in [122].

The situation was clarified only recently [23, 80] by (i) calculating the two-loop field-
theoretic functions and (ii) discussing the possible fixed-point values and their stability.
It turned out that the cumbersome fixed point w� = ∞ (ρ� = 1) is unstable in the whole
d–n-plane and the two other fixed points are stable in certain regions. However, this result
cannot be obtained within the usual ε-expansions since a non-analytic ε-dependence of the
finite fixed-point value appears in a certain region of the d–n-plane.

Considering the fixed point ρ�(ε, n) as a function of the spatial dimension d and the
component number n of the OP, one finds in the vicinity of 1 the deviation as

ρ�
as(ε, n) = 1 − 0.5 e−a(ε,n)/γ �2 ≡ 1 − x (303)

with (LA defined by (A.2))

a(ε, n) = n

2
− 1 +

n + 2

6
u�(1 − LA) +

γ �2

2

(
n

2
− 1 − (n + 2)LA

2

)
− (n + 2)u�2

72γ �2
(2LA − 1)

(304)

proving it to be smaller than 1. Since γ �2 ∼ ε, the fixed point ρ�
as(ε, n) cannot be represented

in the usual ε-expansion. Figure 1 (right part) verifies the crossover of the numerical solution
for ρ�(ε, n) to the asymptotic solution (303), but even in this enlarged figure, the difference
of ρ� from 1 cannot be seen. This feature persists in a self-similar way even for higher
magnifications.

Using the non-analytic fixed point (303) in calculating the stability regions, one comes to
the ‘phase diagram’ in the d–n-plane as shown in figure 2. There exist three regions:



Topical Review R259

Figure 1. Left: fixed-point function ρ�(ε, n) (n OP dimension) at different spatial dimensions d
(ε = 4 − d); solid curve: numerical solution. The maximum of the function is always smaller
than 1 (see (303)) but this is not visible for ε close zero. Dotted curves are calculated from strict
ε-expansions, which break down at n = 2. Right: enlargement of the region near ρ�(ε, n) = 1.
Shown here is the merging of the numerical solution (solid curve) into the analytic solution (303)
(dashed-dotted curve) valid near ρ�(n) = 1. Even at this resolution, one cannot see that the
fixed-point function does not reach the value 1 (from [23]).

Figure 2. Regions of existence of different fixed points: εα(n) separates the region with non-
diverging (γ � ≡ 0, right) from those with diverging (γ � �= 0, left) specific heat (dashed curve).
The solid curve ε1(n) separates the region I where the fixed point ρ�(ε, n) ≡ 0 is stable (right)
from that where it is unstable (left).

• Decoupled region Ia . Right of εα(n) with (u� = uH , γ � = 0, ρ� = 0) stable; the
asymptotic dynamical critical exponents are zϕ = 2 + cη for the OP and zm = 2 for the
secondary density m.

• Weak-scaling region Ib. Between ε1(n) and εα(n) with (u� = uH , γ � = γC, ρ� = 0)

stable; the asymptotic dynamical critical exponents are zϕ = 2 + cη for the OP,
zm = 2 + α/ν for the secondary density m

• Strong-scaling region II. Left of ε1(n) with (u� = uH , γ � = γC, ρ� = ρC) stable; the
asymptotic dynamical critical exponents are zϕ = zm = 2 + α/ν for the OP and the
secondary density m

The borderlines of the different boundaries are

εα(n) = (4 − n)(n + 8)2

(n + 2)(13n + 44)
, (305)
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Table 5. Values for the dynamical critical exponent z in the different regions of the d–n-plane for
the OP and the secondary density m.

Region

Ia Ib II

zϕ 2 + cη 2 + cη 2 + α/ν

zm 2 2 + α/ν 2 + α/ν

where the static coupling goes to zero, and

ε1(n) = (4 − n)(n + 8)

(n + 2)
(

13n+44
n+8 +

(
LA − 1

2

)) (306)

where w or ρ goes to zero.
The corresponding asymptotic dynamical critical exponents are collected in table 5. They

are obtained from the ζ�- and ζλ-function (see (A.8) and (A.10)) inserting the appropriate
values for the fixed points. In the case of strong scaling (w� �= 0), the fixed-point values
ζ �
� = ζ �

λ and can be expressed exactly by the static exponents α/ν (271).
From the two modes of model C, a dimensionless amplitude ratio can be defined [19]

µ = lim
q→0

(
ωm(q)

ωφ(q)(qξ)2

)
. (307)

The amplitude was calculated within the Wilson–Feynman graph expansion in one-loop order
[120]. Inserting the fixed-point values for n = 1 in the strong-scaling region in O(ε), one
obtains

µ = 1 + 0.5004ε. (308)

So far no field-theoretic calculation of this ratio has been performed.

11.2. Flow of model C and effective dynamic exponent

The neighbourhood of the borderlines ε1(n) and εα(n) of the different regions in d = 3 for
the cases n = 1 and n = 2 leads to the existence of small dynamical transient exponents. In
fact one has the values 0.045 (n = 1), 0.0145 (n = 2) and 0.015 (n = 3) (see figure 3(a)
in [80]). Therefore, one might expect that the non-asymptotic behaviour dominates and the
dynamical behaviour is described by an effective exponent zeff

ϕ instead of the asymptotic zϕ

even for n = 3. The effective dynamic exponent for the OP is defined as

zeff
ϕ = 2 + ζ�(u, γ ;w) (309)

extending the asymptotic definition (255). The values of the couplings u, γ and time ratio w

are taken from the corresponding solution of the flow equations (see (176)–(178) and (196),
(197) shown in the left part of figure 3). Inserting this flow into (309) gives the effective
dynamical critical exponent. The right part of figure 3 displays two examples of zeff

ϕ for each
value of n = 1, 2, 3. The interesting general feature is that the effective exponents might
be larger than the asymptotic values. The maximum decreases when the initial value of the
fourth-order coupling u reaches its fixed-point value.

Comparing the flow of w in the left part of figure 3 and zeff
ϕ in the right part of figure 3,

one observes that the effective exponent might be near its fixed-point value although the
time scale ratio w is far from its fixed-point value. This can be explained by looking at the
expression for ζ� (see (A.8)). One notes that ζ� depends on the product γ 2w. Therefore, if
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Figure 3. Left: flow of the static fourth-order coupling u, the static coupling γ 2 and the time
scale ratio w at ε = 1 (d = 3) at three physically relevant OP component numbers n = 1, 2, 3.
The initial values u = 0.0025, γ 2(l0) = 0.6 and w(l0) = 0.25 are the same in all three cases.
Right: effective dynamical critical exponent for three physically relevant OP component numbers
n = 1, 2, 3 calculated from the flow of figure 3. In order to demonstrate the dependence of zeff

ϕ on
the initial conditions two different initial values of u were chosen.

γ 2 reaches its fixed-point value γ �2 = 0 the time scale ratio w may be far from its fixed-point
value w� = 0 but ζ� ∼ ζ �

� . This is the case for n = 2, 3. In the case n = 1, both γ 2 and w

have to reach their fixed-point values in order to obtain the asymptotic result.

11.3. Computer simulations

Computer simulations have been performed in [123] for the Ising antiferromagnet with
fixed magnetization well represented by model C [20]. For the Ising case, one expects
z = 2 + α/ν ∼ 2.158 much larger than the value expected for model A where z ∼ 2.05.
From simulations, a value of z ∼ 2.28 was estimated. Surprisingly, a much larger exponent,
z ∼ 3.3, was found for the Ising ferromagnet with energy conservation which also belongs to
the model C class [124].

11.4. Models C∗′ and C′

Model C or C� may be generalized to the case where two conserved densities couple to the
OP [71] indicated by the prime. This leads to dynamic equations

∂ �ϕ0

∂t
= −2�̊

δH
δ�ϕ+

0

+ �θϕ,
∂ �ϕ+

0

∂t
= −2�̊+ δH

δ�ϕ0
+ �θ+

ϕ , (310)

∂m0

∂t
= Λ̊· ∇2 δH

δm0
+ θm. (311)
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The static functional H = Hϕ + H(Ms)
m is given by (38) and (47) for M = 2. The KCs of the

two secondary densities are now represented by the matrix Λ̊ introduced in (84). Note that
apart from the static coupling to the OP γ̊ the conserved densities are diffusively coupled by
L̊. The explicit two-loop results for the ζ -functions of the KCs are presented in (A.53) and
(A.56).

The main result of the analysis of this model is that it can be related asymptotically to the
simpler model C. Defining three time scale ratios w1 = �/λ,w2 = �/µ and w3 = L/(λµ)1/2

(see (203)), the fixed-point values can be related to the fixed-point value of model C, since
only one of the time scale ratios, in our case w2, may have a non-zero value. Introducing

ρ2 = w2

1 + w2
(312)

quite analogous to (302), the finite fixed point can be written as

ρ�
2 = ρ� 1 − w2

3

1 − ρ�w2
3

(313)

where ρ� is the model C fixed point. Inserting the ζ -functions (A.56) into (209), the flow
equation for w3 reduces to

�
dw3

d�
= βw3 = 0. (314)

Thus, we have w3(�) = w3(�0). w3 stays constant and acts as parameter in the flow of
the remaining time scale ratios and mode coupling parameters. Thus, one has a line of
fixed points according to (313). w3 determines the dissipative coupling between the two
secondary densities. Its values may range from w3 = 0 on the one hand, which is the case
of a decoupling of the dissipative processes of the two secondary densities, to w3 = ±1 on
the other hand, describing total coupling in the sense that the dissipation of two secondary
densities is determined only by one density. For w3 = 0, one of the secondary densities
(namely m1) is completely decoupled from the OP and model C is in fact recovered. In the
case w2

3 = 1, a transformation to new secondary densities can be found where the first one
fulfils a dynamic equation with a diffusion term while the dynamics of the second one is
determined by a time-reversible equation without any dissipation. The values of w2

3 cannot
exceed 1 because the matrix (84) of dynamic coefficients has to be positive definite.

The dynamical critical exponent zϕ for the finite fixed point ρ�
2 is independent of w3

always given by zϕ = 2 +α/ν. This connection to model C can also be seen for the subleading
exponents (for more details see [71]) and in conclusion the same phase diagram (with the same
equations for the borderlines in d–n-space) as for model C is obtained. Thus, there exist the
same three regions as for model C:

• Decoupled region Ia . Right of εα(n) now with (u� = uH , γ � = 0, ρ�
1 = 0, ρ�

2 = 0) stable;
in consequence, the asymptotic dynamical critical exponents are zϕ = 2 + cη for the OP
and formally zm1 = zm2 = 2 for the decoupled densities.

• Weak-scaling region Ib. Between ε1(n) and εα(n) with (u� = uH , γ � = γC, ρ�
1 = 0, ρ�

2 =
0) stable; in consequence, the asymptotic dynamical critical exponents are zϕ = 2 + cη

for the OP, zm2 = 2 + α/ν for the coupling density m2 and formally zm1 = 2 for the
decoupled density m1.

• Strong-scaling region II. Left of ε1(n) with (u� = uH , γ � = γC, ρ�
1 = 0, ρ�

2 �= 0) stable;
in consequence, the asymptotic dynamical critical exponents are zϕ = zm2 = 2 + α/ν for
the OP and the coupling density m2 formally zm1 = 2 for the decoupled density m1.
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Figure 4. Flow of the dimensionless KCs of model C′ for the static flow of figure 3 and the initial
values w1(l0) = 1 and w2(l0) = 0.25. Note that for n = 2 contrary to n = 3 the KCs L and µ

have not reached their constant asymptotic values due to the small transient exponent (see table 6).

Table 6. Overview of the dynamical critical and transient exponents of model C′ in the different
regions of the n–d-plane (see figure 2). Since ζλ = 0 λ is a constant. The exponent ω

(C)
ρ is the

transient of model C.

n ζ �
� ζ �

µ ζ �
L ω+ ω−

1 α/ν α/ν α/(2ν) α/ν ω
(C)
ρ

2, 3 cη 0 0 cη cη

11.5. Effective behaviour of model C′

In the asymptotic region, the flow of the parameters reaches their fixed-point values and the
KCs of model C′ behave according to the power laws

�(�) ∼ �ζ�
� µ(�) ∼ �ζ�

µ , (315)

λ(�) ∼ �ζ�
λ L(�) ∼ �ζ�

L . (316)

For the exponents and also for the dynamical transient exponents see table 6.
Since the transient exponents are in part the same as in model C, where they are rather

small, we also expect in model C′ that the asymptotic behaviour may be seen only very close
to Tc. One has to distinguish between the different parameters and the corresponding effective
behaviour, e.g., of the KCs, in the non-asymptotic region. The parameters may reach their
asymptotic values at different distances from the critical point as has been discussed above.
Here, we compare the effective behaviour of the KCs �,µ and L for the same static initial
conditions but at different numbers of OP components (see figure 4). For n = 1, we are in
the strong-scaling region and the KCs reach the power laws according to table 6. Thus, one
finds for the KCs � ∼ µ ∼ L2 as can be easily seen in figure 4 (note the different scale for L).
For n = 2, 3, the KC � ∼ �cη, while µ and L should be constant since they decouple. This is
only seen for n = 3 whereas for n = 2 the effective behaviour shows a decrease of the kinetic
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coefficient. The difference comes about by the slower decrease of the static parameter γ 2 for
n = 2 compared to n = 3 (see figure 3). The value of the time scale ratio w2 (or ρ2) is far
from its fixed-point value quite the same as w for model C in figure 3.

All KCs decrease due to fluctuation effects (in the classical van Hove theory they would be
constant). This is not a general feature since for systems with mode coupling terms (compare
the situation in model F′ below) the kinetic coefficient diverges due to fluctuation effects.
Thus, critical slowing down may be enhanced or reduced by fluctuations.

12. Model E/E′ (planar ferromagnet)

The planar ferromagnet includes a two-component non-conserved OP describing the
magnetization in a plane and a conserved secondary density which represents the magnetization
perpendicular to the ferromagnetic plane. The two-component OP is usually written as a
complex density ψ0, the secondary density m0 is a vector component. The critical dynamics
of such a system is described by the dynamic equations

∂ψ0

∂t
= −2�̊

δH
δψ+

0

+ iψ0g̊
δH
δm0

+ θψ, (317)

∂ψ+
0

∂t
= −2�̊

δH
δψ0

− iψ+
0 g̊

δH
δm0

+ θ+
ψ, (318)

∂m0

∂t
= λ̊∇2 δH

δm0
+ 2g̊ Im

[
ψ0

δH
δψ0

]
+ θm, (319)

which are denoted as model E in the literature. The static functional H = HGLW + H(1v)
m is

determined by (24) and (41). The kinetic coefficient of the OP �̊ is real.

12.1. Superfluid transition in 4He

Beside the critical behaviour of planar ferromagnets, model E can be used to describe the
critical behaviour of 4He at the superfluid transition in the very asymptotic region. The
reason for this is that model F (see the next section), which is the complete model for 4He at
the superfluid transition, turns at the fixed points into model E. Thus, the whole asymptotic
behaviour represented by the critical dynamic exponents zi and the transient exponents ωi is
equal in both models. This has been used in the past to study the fixed points and to determine
the transient exponents for the superfluid transition within model E [4, 100]. The examination
of the stability of the fixed points and the values of the transient exponents revealed that the
fixed-point value of w is very small or even zero (see the discussion in section 8.5) and one
transient exponent, ωw, is very small. In consequence, the critical behaviour of the model
parameters, especially the time scale ratio w, is influenced heavily by non-asymptotic effects.
Therefore, it is not expected to see the asymptotic behaviour of the transport coefficients like
the thermal conductivity in the experimentally accessible temperature region.

12.1.1. Thermal conductivity. Measurements of the thermal conductivity κT demonstrated
the divergence expected from scaling theory with the dynamic exponent z = 3/2 (see (281))

κT (ξ) ∼ ξ 2−z ∼ ξ 1/2. (320)
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However, deviations in the power law by about ξ 0.1 [6] were already mentioned in [1]. A more
sensitive quantity is the thermal conductivity amplitude defined by

R
exp
λ (t) = κT (t)

g̊
√

ξ(t)kBCP (t)
(321)

calculated from the thermal conductivity κT (t), the specific heat CP (t) and the correlation
length ξ(t) measured in experiments. The amplitude was thought to be asymptotically a
universal constant independent of temperature and pressure, this turned out not to be the case
[11, 127].

Because the field-theoretic functions of model E are much simpler in a two-loop
calculation than those of model F, model E has been used in a first attempt to calculate
the theoretical counterpart of R

exp
λ (t). Instead of using the fixed-point values in the amplitude

ratio, the nonlinear flow equations according to the two-loop field-theoretic functions (A.20)
and (A.21) are inserted. The amplitude has been calculated in one-loop order

Reff
λ (t) =

(
Kd

w(�)f 2(�)

)1/2 (
1 − f 2(�)

4

)
, (322)

where w and f have been defined in (195) and (198). It has been used for a fit to the data in the
experimentally accessible temperature region [11, 125]. The parameter t = (T − Tλ)/Tλ is
the reduced temperature which is connected to the flow parameter � by the matching condition
(218). Once the specific flows, e.g. at different pressures (their initial values at some relative
temperature distance t0), have been found by a fit of (322) to its experimental counterpart
(321), other dynamic quantities can be calculated using these selected flows.

By this method, the second sound damping below Tλ [126] has been studied within model
E. The analogous effective amplitude Reff

2 (t) for the second sound damping (see (10)–(14) in
[10]) below Tλ is a function of the dynamic parameters. Inserting the flow of the fit of R

exp
λ (t),

good agreement with the experimental values of R
exp
2 (|t |) measured in [128] was obtained.

The comparison with extended experimental data [129–132] could be improved by using the
flow of the more complete model F analysis of the thermal conductivity amplitude [133].

Indeed, model E can only be considered as a simplified model for the dynamics of the
superfluid transition because it neglects the temperature dependence of the static entropy
density correlation function due to the absence of a coupling γ to the OP. Accordingly,
deviations from the temperature behaviour calculated within the complete superfluid model
(model F) are expected (see below).

12.1.2. Light scattering. Within model E investigations of the light scattering amplitude
have also been performed [12]. In the hydrodynamic region above Tλ, the shape of the
light scattering function is given by a Lorentzian and the width at fixed wave vector k
is ω(k, ξ) = DT (ξ)k2 where DT = κT (ξ)/(ρCP (ξ)) is the thermal diffusion coefficient.
Correspondingly, below Tλ the width is related to the second sound damping. Both quantities
are known from the non-asymptotic analysis of (322) and Reff

2 (|t |) and have been compared
to the experimental width (see figure 5).

So far the field-theoretical calculations have not been extended into the critical region,
kξ  1. The hydrodynamic shape function crosses over to a non-Lorentzian shape in the
critical region calculated within model E in one-loop order [100]. The shape strongly depends
on fixed-point values for the time scale ratio w (or effective values found from the fit of the
thermal conductivity amplitude). Small values of w� imply a peak of the shape function at
finite scaled frequency in the critical region and at Tλ. This is also a feature of the SSS model,
which is a generalization of model E for n �= 2 (see subsections 15.1 and 18.2). Experiments
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Figure 5. Halfwidth of the light scattering spectrum at k = 1.79 × 105 cm−1 and P = 23.1 bar.
Data are from [134], the solid curve is model E result for the hydrodynamic spectrum. The arrows
indicate the border of the hydrodynamic region kξ = 1. (from [11]).

are made in finite distance from the critical point because they are performed at finite distance
from Tλ and/or at finite wave vector k. Moreover, the theoretically calculated shape has to be
folded with an instrumental resolution function smearing out the specific details of the model
E shape. This has been taken into account using the shape function of [100] and together with
a parametrization of the thermal conductivity including the two subleading correction terms.
Consistency between the thermal conductivity data and the width of light scattering over the
whole temperature region of the measurements has been shown [135]. A non-asymptotic
calculation of the shape and measured width in the critical region and at Tλ within model F
using the flows found from an analysis of the thermal conductivity would be desirable.

13. Model F (superfluid transition in 4He)

The model describing the critical dynamics in 4He at the superfluid transition has been set up
in [52, 136]. Although the reversible part of the dynamic equations is defined from Poisson
brackets of physically different variables compared to the planar spin model (model E; see
section 7.2), the dynamic equations have the same form (compare the previous subsection)
apart from one difference. The kinetic coefficient �̊ = �̊′ + i�̊′′ is now a complex quantity.

∂ψ0

∂t
= −2�̊

δH
δψ+

0

+ iψ0g̊
δH
δm0

+ θψ, (323)

∂ψ+
0

∂t
= −2�̊+ δH

δψ0
− iψ+

0 g̊
δH
δm0

+ θ+
ψ, (324)

∂m0

∂t
= λ̊∇2 δH

δm0
+ 2g̊ Im

[
ψ0

δH
δψ0

]
+ θm. (325)

Compared to model E as defined above in (317)–(319), the meaning of the densities is different.
The non-conserved complex OP ψ0 represents a macroscopic wavefunction and the secondary
density m0 represents the entropy density which is a scalar quantity. Therefore, the static
functional is now H = Hϕ + H(1s)

m (see (38) and (40)) including a static coupling γ̊ .
From studying the fixed points of this model, it became clear that the static coupling γ to

the OP would only be relevant for the asymptotic behaviour if the fixed point γ � �= 0 leading
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to a diverging specific heat. An analysis of the static fixed points revealed that this is only the
case for n = 1 (see model C). For the present model, we have n = 2 and therefore the value
γ � = 0 at the stable fixed point. This leads to a finite specific heat at Tλ with a negative specific
heat exponent α. There is one exception, if the stability boundary between γ � �= 0 and γ � = 0
crosses the point d = 3, n = 2 the specific heat would have a logarithmic divergence (α = 0).
Measurements of the specific heat in older literature did not clarify whether the specific heat
has a logarithmic divergence or a negative exponent which is very small (for an overview on
the experimental situation at that time see [127]). Newer and more accurate measurements
of the specific heat [8, 137] and a refined analysis of the data [7], also at higher pressures
than saturated vapour pressure (SVP), confirmed that the specific heat exponent α is in fact
negative but very small (a recent measurement in zero gravity found α = −0.0127 [8]) in
agreement with theoretical calculations [138]. Therefore, the flow of the static coupling γ (�)

is far from its fixed-point value and remains relevant in the experimental accessible region for
the analysis of the static and dynamic quantities in 4He.

As already mentioned, it turned out in two-loop order that model F (and E) at n = 2, d = 3
(see also the discussion on the ‘phase diagram’ of the SSS and DP models in sections 15.1 and
15.2) lies near the stability borderline between the so-called strong- and weak-scaling fixed
points. This leads to the presence of a slow dynamic transient ωw [4, 9, 100], which is defined
by

ωw = ζ�(u�, γ � = 0, w�) − ζλ(u
�, γ � = 0, w�) (326)

(see also section (8.5)). The position of the borderline of stability and the value of ωw depend
sensitively on the fixed-point value u� of the static fourth-order coupling [22]. For the Borel-
summed value u� = 0.0362, the weak-scaling fixed point is the stable one and the transient
exponent is ωw = 0.008. But independent of the position of the stability borderline, the value
of w� and the value of ωw are very small. This closeness of the stability boundary is the reason
for the non-universal behaviour of dynamical quantities and makes it necessary to compare
experimental results with the non-asymptotic RG theory calculating the effective behaviour
outside the asymptotic region. For that purpose, the two-loop expressions of the field-
theoretic functions of model F have to be calculated. Their correct form has been found only
recently [139] after correcting errors of earlier calculations [22, 72] (see the ζ -functions (A.24)
and (A.27)).

13.1. Thermal conductivity

The thermal conductivity κT , or the thermal diffusion coefficient DT respectively, measured
in experiments is related to the dynamic vertex functions of the secondary density by (see the
discussion in section 6.5)

DT = κT

ρCP

= ∂

∂k2
�̊mm̃(ξ, k, ω = 0)

∣∣∣∣
k=0

, (327)

where ρ is the mass density of 4He and CP is the isobaric specific heat. The latter one is
related to the static vertex function of the secondary (entropy) density by

CP = (�̊(s)
mm(ξ, k = 0)

)−1
. (328)

It turned out by improving and extending the measurements that R
exp
λ (321) was

temperature and pressure dependent up to relative temperature distances of 10−9 [7, 8]. The



R268 Topical Review

Figure 6. Left: comparison of the experimental amplitude ratio of the thermal conductivity (321)
with its theoretical counterpart (329) in 4He. All data (from [7, 141]) between 10−7 � t � 10−2

are fitted (this corrects figure 7 in [142]). Right: the flow of the fit (right) demonstrates that the
time ratio w′ is far from its fixed-point value w� = 0. This is due to the small dynamic transient
ωw (326).

solution to this problem was that one measures an effective (non-universal) behaviour of this
ratio. The ratio has been calculated by field theory up to two-loop order in model F [140]

Reff
λ (t) = 1 − f 2(l)/4 + f 2(�)M(w(�), f (�), γ (�), u(�))

2
√

πf 2(�)w′(�)(1 + γ 2(�)F+(u(�)))
, (329)

where in addition to the dynamic flow of the complex time ratio w = w′ + iw′′ and f , the
static flow of the fourth-order coupling u and the coupling γ appear. The function F+(u)

is the static amplitude function of the specific heat above Tλ. The function M contains the
two-loop contributions to Reff

λ . A precise comparison with experiments at different pressures
has been performed in [22, 143]. Here, we show a fit of R

exp
λ (see figure 6) using the dynamic

flow equations given by (A.24)–(A.29) in (197) and (200) and the corresponding flow at SVP.
The fit fixed the initial values of the non-asymptotic flow of the dynamical parameters (mode
coupling f and complex time ratio w) at t = 10−2. The changes in the β-function of [22] due
to the corrections in [72, 139] lead to a fit with only slightly changed parameters w′ and f ,
whereas the flow of w′′ is changed in the background region. Its value (the renormalized one)
is now in better agreement with the unrenormalized value calculated in [144].

A test of the theoretical result consists either in a prediction of the effective behaviour in
the region closer to Tλ (the quality of such a prediction can be seen by comparing a fit of the
data in the region t = 10−6 to t = 10−2 with the data within 10−7 < t < 10−6, respectively,
the agreement of the prediction at SVP is excellent [143]) and/or predicting other dynamical
quantities of the system5.

The dynamic flow found in the fits have been used for calculating the critical
thermal boundary resistance (Kapitza resistance) [145–148], finite-size effects in the thermal
conductivity [149–151] and the influence of nonlinear effects on the thermal conductivity in
4He [152–155].

In order to study the Kapitza resistance between liquid 4He and a solid wall, one has
to extend the equations of motion by introducing a term representing the heat source on the

5 Since the values of the dynamic parameters w′(�) and f (�) found by the fits to R
exp
λ [143] are only slightly changed

compared to the flow found in [22], no changes are expected in the quantities where the flow has already been used.
This also holds for the prediction of R

exp
λ made for temperature region in the next decades below t = 10−6.
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right-hand side of (325). The problematic input into the theoretical calculations is the correct
boundary condition for the OP ψ0 at the wall. In [145, 146], Dirichlet boundary conditions
have been chosen. Good agreement with experimental results at SVP was obtained at T < Tλ.
However, deviations from experimental results above Tλ remain and calculations of the Kapitza
resistance remains a challenge for the theory.

At vanishing heat current, the effective correlation length diverges with the exponent
ν. The presence of a finite heat current leads to an effective correlation which stays finite
at Tλ. The larger the heat current the smaller the finite value at Tλ. This leads then in the
thermal conductivity to finite plateau values at finite heat currents. Also the specific heat and
the superfluid density will be considerably influenced by finite heat currents. This has been
presented in [154] by a renormalization group treatment of the specific heat and superfluid
density. The non-equilibrium conditions by a finite heat current were extended to include
gravity effects in [156].

14. Model F′ (superfluid transition in 3He–4He mixtures)

In 3He–4He mixtures additional to the entropy density, one has to consider the local
concentration c as a conserved density. Therefore, one has two scalar secondary densities
m10 and m20 coupled to the OP. The dynamic equations are analogous to (323)–(325) in model
F. The difference is that m0 is now a two-component column vector (two scalars written as a
vector). Consequently, the mode coupling g̊ is also a column vector and the KCs Λ̊ define the
matrix (84). The equations of motion therefore read

∂ψ0

∂t
= −2�̊

δH
δψ+

0

+ iψ0g̊ · δH
δm0

+ θψ, (330)

∂ψ+
0

∂t
= −2�̊+ δH

δψ0
− iψ+

0 g̊ · δH
δm0

+ θ+
ψ, (331)

∂m0

∂t
= Λ̊ · ∇2 δH

δm0
+ 2g̊ Im

[
ψ0

δH
δψ0

]
+ θm. (332)

They are expected to describe all slow modes: thermal diffusion, mass diffusion and the
corresponding cross phenomenon, the Sorret effect. The static functional H = Hϕ + H(Ms)

m

is given by (38) and (47) for M = 2. Concerning the asymptotic properties of this model it
reduces to model E′ since the static couplings of the conserved densities to the OP have zero
fixed-point values.

14.1. Transport coefficients in mixtures

In order to understand the effective behaviour of the transport coefficients, one needs the
complete information contained in the flow equations. The same argumentation as for pure
4He also applies here. The static coupling is far from its fixed-point value and one has to
take into account its flow. The dynamic slow transient is also present. The initial conditions in
the background are concentration dependent and part of the temperature behaviour is explained
by this dependence (there would also be a pressure dependence but this has not been considered
so far). The limits to special values of the mole fraction X have to be considered:

• The crossover to pure 4He (X = 0).
• The crossover to the decoupling point at about XD ∼ 0.36.
• The crossover to the tricritical point at about Xt ∼ 0.67.
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Each of these limits is characterized by a special behaviour of the background parameters.
In case (i) one mode coupling and the time scale ratio containing the Onsager coefficient for
the thermal diffusion ratio go to zero with the consequence that the non-asymptotic model
F behaviour is recovered. In case (ii) also one mode coupling goes to zero but the time
scale ratios stay finite. Therefore, in this case the model F behaviour is only reached in
the asymptotics (for a more detailed discussion of the two cases see [157]). Case (iii) is
special since it is a crossover involving the background value of static fourth-order coupling u,
which goes to zero at the tricritical point, but this case will not be further discussed here (see
[53, 158, 68]).

Crossover effects are most prominently observed in the thermal conductivity κT at zero
mass current. In the mixture, this conductivity is finite at Tλ and equal to its temperature-
independent value κeff below Tλ. The value below and at Tλ diverges in the limit X → 0 like
X−1. Quite different is the behaviour of the thermal conductivity in the limit to the decoupling
point XD where it becomes temperature independent above and below Tλ.

In a first theoretical attempt, an analysis of the temperature dependence of the transport
coefficients, thermal conductivity κT , thermal diffusion ratio kT and mass diffusion coefficient
D has been made for mole fractions 0 < X � 0.36 within model E′ [17] in two-loop order.
Analogous to model E, the static functions like specific heat or concentration susceptibility
are independent of the temperature. This leads to deviations in the quantitative comparison
with experiments. Most prominently this can be seen in the temperature-independent thermal
conductivity κeff below Tλ which is not reproducible by model E′ where a temperature-
dependent thermal conductivity is generated [159]. At the same time, a renormalization
method (no scaling transformation is involved) has been applied to model F′ in [68] and the
leading fluctuation effects in the transport coefficients calculated. Another attempt has been
made using a hybrid model [69, 160] partly taking into account model F′ terms and model
E′. Model F′ has been solved completely in one-loop order. This approach takes into account
the static coupling γ 2(�(t)) and leads to temperature-dependent static susceptibilities. The
effects of the slow transient are included by adding the two-loop model E′ results for the
dynamic ζ -functions to the flow equations (then the correct two-loop asymptotics is obtained).
A significant improvement has been achieved in κeff which now turns out to be temperature
independent [161]. Recently, the complete model F′ has been solved in two-loop order [142].
The corresponding dynamic ζ -functions are presented in (A.65) and (A.69)–(A.71).

The comparison of results of model F′ with experimental data above Tλ for the thermal
conductivity κT , the thermal diffusion ratio kT and the mass diffusion coefficient D is shown
in figure 7 for several mole fractions X. The relative temperature distance to Tλ is denoted by t.
The connection between the experimental measurable quantities κT , kT ,D and the theoretical
vertex functions (∂/∂k2)�̊mim̃j

(ξ, k, ω = 0)|k=0 is now more complex as in (327) and (328)
for pure 4He and will therefore not be presented explicitly here. The interested reader can find
the necessary relations in [69, 160]. κT and kT have been fitted in order to obtain the initial
values wi(�(t0)), fi(�(t0)) for the flow of the model parameters. The fits of κT and kT (solid
lines in figure 7) include all data. The mass diffusion coefficient is then completely determined
and the curves for D are predictions in figure 7. Fits at small mole fractions revealed that
the background behaviour of kT strongly influences the result for D. This is demonstrated at
X = 0.00095 where less kT data in the background are available. A second fit (dashed lines
in figure 7) only down to t = 10−5 leads to a different background behaviour of kT . As a
consequence, the result for D is considerably shifted.

The specification of the flow with the fits of κT and kT also determines the effective
thermal conductivity κeff below Tλ without any adjustable parameter. Calculating the thermal
conductivity closer to Tλ, one observes that the values of κT approaching Tλ as well as κeff



Topical Review R271

Figure 7. Left: thermal conductivity κT , thermal diffusion ratio kT and mass diffusion coefficient
D above Tλ at several mole fractions. The initial values for the flow are found by a fit of κT and
kT . D is predicted. The position of D is strongly connected with the background behaviour of
kT . This is demonstrated at X = 0.00095 by two fits which lead to different results for kT in the
background. The first one includes all data (solid line) the second one only data down to t = 10−5

(dashed lines). The asymptotic behaviour of these coefficient is shown in table 7. Data from
[162–164]. Right: flow of the fit at X = 0.366.

Figure 8. Thermal conductivity κT above and κeff below Tλ. The value of κeff is predicted by
the fits of κT and kT in figure 7. The plateau values of κT and κeff are tightly connected to the
background behaviour of kT . Now the differences of the two fits at X = 0.00095 with different
t-intervals (see figure 7) are also visible in κT for values of t closer to Tλ. Data from [162–164].
This corrects figure 4 of [142].

considerably depend on the background behaviour of kT . This is demonstrated in figure 8
where κT and κeff are calculated down to t = 10−8. The dashed lines at X = 0.00095
correspond to the dashed curves in figure 7. The uncertainty in κeff (difference between solid
and dashed lines) is a result of the uncertainty in the background behaviour of kT .



R272 Topical Review

Figure 9. Kinetic coefficients for model F′ as a function of the flow parameter �. Note that contrary
to model C′ the KCs diverge with exponents shown in table 8.

Table 7. Asymptotic critical behaviour of the transport coefficients in 3He–4He mixtures and pure
4He at the superfluid transition. Values calculated by RG. The thermal conductivity in the mixture
is defined at zero mass current.

System Thermal conductivity Thermal diffusion ratio Mass diffusion

Pure 4He κ ∼ ξ1/2+ω
(F)
w /2 – –

3He–4He mixture Constant see (333) D ∼ ξ1/2+ω
(F)
w /2−γ /ν

Table 8. Overview of the dynamic critical exponents and transient exponents of model F′ at the
scaling (SC) and at the weak-scaling (WSC) fixed point (FP). ω

(F)
w = ζ �

� − ζ �
µ is the transient of

model F. (For ω− see (223).)

FP ζ �
� ζ �

µ ζ �
L ζ �

λ ω−

SC −1/2 −1/2 −1/2 −1/2 ω
(F)
w

WSC −1/2 + ω
(F)
w −1/2 − ω

(F)
w /2 −1/2 − ω

(F)
w /2 −1/2 − ω

(F)
w /2 ω

(F)
w

The thermal diffusion ratio reaches near Tλ a purely static quantity [68, 165]

lim
T →Tλ

kT = Tλ

[(
∂c

∂�

)
PT

σ

c
−
(

∂c

∂T

)
P�

]
, (333)

where the second thermodynamic derivative is temperature dependent near Tλ. The difference
of the chemical potentials of 4He and 3He is denoted by �. In the limit of zero concentration,
this derivative stays finite in the low-temperature phase and at Tλ

lim
X→0

kT = kT 0 = 0.57, kT 0 = 3M3Sλ

2M4R
, (334)

but goes to zero in the background in the normal phase.
The behaviour of the KCs of the model is shown in figure 9. Contrary to model C′, the

KCs diverge (see figure 4).
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Figure 10. Singular part κs of the thermal conductivity at zero mass current at different
concentrations according to (335). In the double logarithmic plot, the curves for different molar
concentration are almost parallel indicating a divergence with the same power law. Approaching
the decoupling point at XD , the value of κs increases and becomes infinite at X = XD . This
corrects figure 6 of [142].

14.2. Singular thermal conductivity

It has been already suggested in [166] to write the thermal conductivity in the normal phase as

1

κT

= 1

κλ

+
1

κs

, (335)

where κλ is the value of the thermal conductivity at Tλ and κs is the divergent part. In the limit
X → 0, where κλ diverges, the singular part κs turns into the diverging thermal conductivity
of pure 4He. The singular part at finite concentration was expected to diverge as in pure
4He. This was later justified by theory [17, 68, 159]. The amplitude of the divergence of κs

depends on the concentration and goes to infinity in the limit X → XD , where the thermal
conductivity κT becomes temperature independent and equal to κλ. It is the singular thermal
conductivity κs which contains the effects of the slow dynamic transient known from pure
4He. The knowledge of the theoretical expressions of the thermal conductivity and the flow
allows us to extract κs very near to XD for the molar concentration X = 0.366 where the
thermal conductivity already appears to be constant (see figure 10).

14.3. Computer simulations

Since the magnetic transition of the XY-ferromagnet lies in the same dynamical universality
class as the superfluid transition in 4He, simulations for XY-spin systems have been performed
in [167]. However because of invariance under the reflection symmetry Mz → −Mz the
magnetic system is represented by the symmetric model E. Due to the additional conservation
of energy in fact one has to compare with model F′ since for the energy density the reflection
symmetry is absent and the static coupling between the OP and the energy might be present.
Moreover, for symmetry reasons no diffusive cross term is present (in 3He–4He mixtures this
cross term leads to the Sorret effect). Asymptotically, such a model would correspond to
model E′ with w3 = 0.

In the spin system, the transport coefficients corresponding to the thermal diffusion
and mass diffusion in model F′ for the 3He–4He mixture are the thermal diffusion and the
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out-of-plane magnetization diffusion, respectively. The simulations [167] show different
dynamic exponents for the order parameter zϕ = 1.62 ± 0.05 and the second conserved
density zϕ = 1.38 ± 0.05 leading to a transient exponent of about ωWSC

w = 0.24 ± 0.1
somewhat larger than the prediction of field theory ωWSC

w = 0.008 [22].

15. SSS model and DP model

Two different models have been defined which can be considered as extensions of specific
models applicable to physical systems. The first one (DP model) has been introduced in [99]
and is a generalization of the dynamic model for the planar ferromagnet (n = 2, model E)
introduced in [52] to arbitrary n. The other one (SSS model) has been introduced in [24]
and [168] for general n and reduces to model E for n = 2 and to the model of the isotropic
antiferromagnet (model G) [136, 52] for n = 3.

Among the interesting items to be studied in these generalized models are the fixed-point
properties in the d–n-plane leading finally to a ‘phase diagram’ as it has been discussed for
the simpler model C. Contrary to model C, the models considered here do not contain a static
coupling γ̊ between the OP and secondary densities of the conserved quantities in their static
functional but a coupling by dynamic reversible terms in the equation of motion.

15.1. SSS model

Originally, the SSS model was introduced to serve as a model for the dynamic behaviour at
a structural phase transition of second order [24]. One starts from an n-component phonon
system (constituting the OP and described by displacive variables) having rotational symmetry.
The generators of the corresponding symmetry group are the n(n − 1)/2 angular momenta
which are conserved quantities. The corresponding Poisson brackets lead to reversible
couplings between the OP and the angular momentum densities. Proceeding along the lines
described in [57] (see section 7.2), one ends up at the following set of equations [168]:

∂φ0α

∂t
= −�̊

δH
δφ0α

+ g̊
∑

β

φ0β

δH
δm0αβ

+ θψα
, (336)

∂m0αβ

∂t
= λ̊∇2 δH

δm0αβ

+ g̊

{
φ0α

δH
δφ0β

− φ0β

δH
δφ0α

}
+ θmαβ

. (337)

For n = 2, this model describes the planar ferromagnet (model E) and for n = 3 the
isotropic antiferromagnet. In both cases, the OP (the x, y components of the magnetization or
the alternating magnetization respectively) is coupled to a conserved density (the z-component
of the magnetization or the magnetization vector, respectively) by mode coupling terms.

From the dynamic ζ -functions (see (A.30) and (A.31))), the fixed-point values of the
dynamic parameters—mode coupling f and time scale ratio w—can be found after inserting
the fixed-point value for the static fourth-order coupling u�. Let us define ζw = ζ� − ζλ and
ζf = (ζ� + ζλ)/2. Then, the β-functions read

βf = −f (ε/2 + ζf ) and βw = wζw. (338)

The existence region of the scaling fixed point (with wSC �= 0 and finite) in the d–n-plane is
found from the solution of the following set of equations:

ζw(fSC, wSC; ε, n) = 0 and ζf (fSC, wSC; ε, n) = −ε/2. (339)
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The borderline nc(ε) beyond which no non-zero solution for wSCc exists is defined by

ζw(fSC, wSC = 0; ε, nc) = 0 and ζf (fSC, wSC = 0; ε, nc) = −ε/2 (340)

where it is assumed wSC(ε, n) is a continuous function.
The stability borderline nSSS

SC (ε) of the scaling fixed point is found from the condition that
one of the eigenvalues of the dynamic stability matrix (222) goes to zero. Defining

1

2

(
−f

∂

∂f
ζf (f,w; ε, n) + w

∂

∂w
ζw(f,w; ε, n)

)
= a(f,w; ε, n) (341)

and(
−f

∂

∂w
ζf (f,w; ε, n)

∂

∂f
ζw(f,w; ε, n)

)
−
(

−f
∂

∂f
ζf (f,w; ε, n)

∂

∂w
ζw(f,w; ε, n)

)
= b(f,w; ε, n), (342)

the stability condition according to (223) reads

a(fSC, wSC; ε, n) −
√

a2(fSC, wSC; ε, n) − 4wSCb(fSC, wSC; ε, n) > 0. (343)

In the limit to the existence borderline where wSC → 0, one finds that the left-hand side of
(343) goes to zero like (n− 2)wSC(ln wSC) +O(wSC) and not linearly with wSC. This is due to
the presence of w ln w terms in ζ

(d)
λ of the SSS model. Nevertheless, the stability borderline

nSSS
SC (ε) defined in this way and the existence borderline nc(ε) of the scaling fixed point are

the same.
The weak-scaling fixed point wWSC = 0 exists in the whole d–n-plane. The stability

borderline of the weak-scaling fixed point nSSS
WSC is found from

ζw(fWSC, 0; ε, n) = 0 and ζf (fWSC, 0; ε, n) = −ε/2, (344)

which is the same set of equations as for the existence borderline nc(ε) of the scaling fixed
point wSC. Thus, all borderlines agree with each other and no discontinuity appears. This
resolves the difficulties reported in [25] where using the ε-expansion a region was found,
where both dynamic fixed points, the scaling fixed point and the weak-scaling fixed point are
stable.

The borderline of the weak-scaling fixed point found by solving these equations
numerically is shown in figure 11 (left part, solid curve) (the same calculations have been
done for the DP model below). These borderlines have been calculated in ε-expansion in
[169, 170]

nSSS
WSC(ε) = 3

2 + 0.42ε and nDP
WSC(ε) = 4 − 1.80ε (345)

where nDP is the result for the DP model (see the next subsection). One observes that the
ε-expansion leads to different spatial borderline dimensions at n = 2, which is due to neglecting
O(ε2) terms (see dashed lines in figure 11 (left part)). The non-expanded borderlines have the
same value at n = 2. The value of the borderline dimension is slightly above d = 3. That
would mean that in d = 3 the scaling fixed point is the stable one for n = 2. This is due to
inserting the ε-expanded fixed-point value u� = ε/[4(n + 8)] into the dynamic ζ -functions.
Using the Borel-summed fixed-point values for n = 2 and n = 3, the borderline values would
be slightly shifted down (see cross in figure 11 (left part)) at these numbers of components of
the OP with the consequence that at n = 2 the weak-scaling fixed point would be the stable
one [22]. The stable fixed point for the SSS model at n = 3 in d = 3 is the scaling fixed
point. The fixed-point value of the dynamical coupling fWSC on the borderline is real only up
to n = 2.7 which is due to the two-loop approximation.
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Figure 11. Left: phase diagram calculated in two-loop order for the SSS and DP models. Stability
boundary of the weak-scaling fixed point for the SSS model (solid curve) and the DP model
(dashed curve) compared to the result of the ε-expansion (dotted lines) for the two models. Right:
fixed-point value of the time ratio w� �= 0 for these models as a function of the number of OP
components at different dimensions.

We have also plotted the fixed-point value of w as a function of n for different spatial
dimensions. At d = 4 (dashed-dotted curves), the one-loop result wSC = 2n − 3 [168] for
the SSS model is recovered at ε = 0. The values of wSC decrease for increasing ε (see solid
curve for ε = 1/2 and dashed curve for ε = 1) and reach zero just after ε = 1 (at the stability
borderline of the weak-scaling fixed point).

15.2. DP model

The generalization to the DP model started from the dynamic model for the planar ferromagnets
(model E) [52] by simply replacing the complex OP by an n/2-component complex OP and
keeping the structure of the mode coupling terms [4, 99]

∂ �ϕ0

∂t
= −2�̊

δH
δ�ϕ+

0

+ ig̊�ϕ0
δH
δm0

+ �θϕ, (346)

∂m0

∂t
= λ̊∇2 δH

δm0
+ ig̊

{
�ϕ0

δH
δ�ϕ0

− �ϕ+
0

δH
δ�ϕ+

0

}
+ θm. (347)

In a similar manner as for the SSS model, one can look at the ‘phase’-diagram for the
DP model. The borderline nDP

SC between the scaling and the weak-scaling fixed point can
be obtained by solving the corresponding equations (339), (340) and (344) now with the
ζ -functions for the DP model (see (A.34) and (A.35)). The outcome is shown in figure 11.
Contrary to the SSS model with n �= 2, the stability exponent goes to zero linearly with wDP

SC
since there are no w ln w terms in ζλ (A.35). Contrary to the SSS model for the DP model at
d = 3 and n = 3, one is in the weak-scaling region. One can see this from the plot of the
fixed-point value of the time scale ratio wSC(ε, n) in figure 11 (right part). For ε = 0, the
one-loop order fixed point value wSC = (n − 4)/n [4] is obtained (dashed-dotted line). For
ε > 0, the value of the scaling fixed point wSC goes to zero at the stability line of the
weak-scaling fixed point.



Topical Review R277

16. Model H (gas–liquid transition in fluids)

In order to obtain the critical behaviour of the thermal transport properties of a pure fluid, one
needs a conserved scalar OP φ0 representing the entropy density per mass and a conserved
secondary density �jt which is the transverse momentum current [52]:

∂φ0

∂t
= �̊∇2 δH

δφ0
− g̊( �∇φ0)

δH
δ�jt

+ �φ, (348)

∂�jt

∂t
= λ̊t∇2 δH

δ�jt

+ g̊
↔
T
[
( �∇φ0)

δH
δφ0

]
− g̊

↔
T

{∑
k

[
jt,k

�∇ δH
δjt,k

− ∇k
�jt

δH
δjt,k

]}
+ ��t. (349)

The dissipation is determined by the corresponding KCs �̊ and λ̊t for the thermal and shear

mode. The mode coupling g̊ follows from the Poisson brackets discussed in section 7.2.
↔
T

is a projector in the direction transverse to the propagation acting onto the vectors in (348)
and (349). In Fourier space, it has the form Tij = δij − kikj /k2. The static functional is
H = HGLW + Hj from (24) and (42). The above equations describe the heat conduction
and the shear mode in a fluid. The couplings of all other conserved densities (mass density,
longitudinal momentum current) are not relevant for the critical behaviour near the gas–liquid
critical point. They have to be taken into account if one is interested in the critical behaviour
of the sound mode. Model H has been extended [34, 171] to include the sound mode and study
its critical properties. The couplings to these densities induce the specific critical behaviour
in the sound velocity and the sound attenuation.

Field-theoretic treatments of this model with the main interest in calculating the asymptotic
values of dynamic exponents for the viscosity and thermal conductivity and amplitude ratios
have started in [4, 99]. A finally correct result for the necessary field-theoretic functions has
been given in [172]. Field theoretic calculations at d = 3 have been performed in [173].
On earth in the experimental region the non-asymptotic behaviour is dominant and effects
of gravity have to be taken into account. In order to incorporate such effects into the field-
theoretic calculation of physical quantities, a one-loop non-asymptotic field-theoretic study
has been performed in a set of papers [16, 174, 175].

Quite recently asymptotic properties of pure fluid dynamics were studied by a self-
consistent theory in [176]. Comparison with the two-loop results of the field theory can be
made when an ε-expansion is performed.

16.1. Asymptotic properties

The universal exponents, the exponent for the thermal conductivity xλ and the exponent for
the shear viscosity xη, which have been presented in (285), are related according to (285).
Besides these exponents, an amplitude ratio known as Kawasaki amplitude is of interest. It
should be universal in the asymptotic region. The definition of the Kawasaki amplitude for
pure fluids (relative to the value R

(mode coupling)

K = 1/(6π) of the mode coupling theory) reads

R
(exp)

K = 6πη̄DT ξ

kBT
, (350)

involving the thermal diffusion coefficient DT , the shear viscosity η̄ and the correlation length
ξ . It is the rewritten Kawasaki–Stokes relation [179].

The thermal diffusion coefficient DT is related to the dynamic OP vertex functions by
(compare (327) in 4He at the λ-transition)

DT = κT

ρCP

= ∂

∂k2
�̊φφ̃(ξ, k, ω = 0)|k=0, (351)
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Table 9. Critical exponent xη for the shear viscosity and Kawasaki amplitude R in model H.

xη RK Reference Remark

0.054 1.063 [181] One loop
0.054 0.756 [52] One loop
0.0712 0.959 [172] Two loop
0.0679 1.174 [176] Self-consistent
0.071 0.85 [176] ε-expansion
0.04 1.0375 [173] d = 3, one loop

while the shear viscosity at zero frequency can be calculated from

η̄ = ρ
∂

∂k2
�̊jt j̃t

(ξ, k, ω = 0)|k=0. (352)

After inserting the renormalized quantities and some rearrangements, the effective Kawasaki
amplitude calculated within theory can be written as

R
(eff)
K = 6πA3

�̂
(s)
φφ(u(�))

f 2(�)
[1 + G(u(�), f (�))][1 + Et(u(�), f (�))] (353)

where G(u(�), f (�)) and Et(u(�), f (�)) contain the loop contributions of the dynamic
amplitude functions of DT and η̄. In one-loop order (ε-expanded), they read for instance

G(u(�), f (�)) = −f 2(�)

16
, Et (u(�), f (�)) = −f 2(�)

36
. (354)

The static OP amplitude function is in one-loop order simply

�̂
(s)
φφ(u(�)) = 1. (355)

The flow parameter � is via the matching condition (218) a function �(t) of the reduced
temperature t. A3 = 1/(4π) is the geometrical factor Ad at d = 3 introduced in (99). The
mode coupling f = g/

√
�λt is defined analogous to (198). Its flow is determined by the

flow equation (199) with the β-function (202) (λ therein is now λt ). The initial value f (�(t0))

can be found by fitting the experimental data of the shear viscosity. The universal asymptotic
value RK = R

(eff)
K (� = 0) for the Kawasaki amplitude is obtained by inserting the fixed-point

value f � for the mode coupling parameter.
Exponents and Kawasaki amplitude have been calculated within several approaches. In

table 9, values for the exponent of the shear viscosity xη from different approximations are
summarized. In the earlier calculations of [52], a technical error in the numerical estimate of
integrals occurred. This is discussed in [172] as well as in [176]. Also the results of [4] are in
error, the value of the dynamic exponent zϕ as well as the stability exponents disagrees with
[172]. The two-loop field-theoretic results [172] in ε-expansion read

zϕ = 4 − 18ε

19
(1 − 0.0196ε) , RK = 6πKd

19ε

24
(1 − 0.054ε) (356)

with Kd = (2πd/2/�(d/2))/(2π)d , (K4 = 1/(8π2),K3 = 1/(4π2)). This can be compared
with the result of [176]

zϕ = 4 − 18ε

19
(1 − 0.0205ε) , RK = 3

π

19ε

24
(1 + 0.196ε). (357)

The coefficients of the ε2-term in the exponent zϕ and Kawasaki amplitude ratio are different
but the numerical values at d = 3 are almost the same for the exponents and 10% different
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for the Kawasaki ratios. A larger discrepancy appears if one considers the results obtained in
[176] without ε-expansion. Then, the exponent is somewhat smaller but the Kawasaki ratio is
much larger than the ε-expanded result (see the values collected in table 9).

The best value of the Kawasaki amplitude used in mode coupling theory as a parameter
in comparison with experiment [180] turns out to be RK = 1.05. This is quite the same as
the value calculated in one-loop order field theory (RK = 1.056 [181]). The larger value in
one-loop order comes about by using a different geometrical factor in the renormalization of u
as in other works. There is a freedom to choose the dimensional factor coming from the angle
degrees of freedom of the unit sphere. The usual choice for this factor in field theory is

Kd = �d/(2π)d (358)

with �d from (100) (instead of the notion Kd one finds Sd [59] but sometimes Sd means �d ,
e.g., [172]) whereas we have chosen for the factor Ad (99) instead of Kd for all models. This
choice makes no difference in the exponents, however the ε-dependence of other field-theoretic
functions might be different (see the additive renormalization of the specific heat in statics
[78]).

Using the minimal subtraction scheme for calculating the ζ -functions (A.38) and (A.39),
the time scale ratio w = �/λt (its naive dimension is −2) has to be set to zero [4]. This is not
necessary if one uses the approach of [173] at d = 3. The ζ -functions in one-loop order then
read

ζ� = −π

3
f 2

(
1 −

( w

1 + w

)2
)

ζλt
= − π

80
f 2. (359)

Since w is irrelevant its fixed-point value is zero with a transient exponent of about ωw ∼ 2.
A detailed discussion of the problems connected with setting the irrelevant parameter w equal
to zero can be found in [172]. This is especially important if one uses formally the β-function
for f and w and calculates the correction exponents ωw.

We think it is important to obtain reliable values for the exponents and the Kawasaki
amplitude within one approach. Only then a consistent picture of the dynamical behaviour of
the fluid in comparison with experiments made for different quantities is achieved.

16.2. Transport coefficients and effective Kawasaki amplitude

The non-asymptotic theory has been applied to the transport coefficients near the gas–liquid
phase transition in order to cope with the situations that measurements (i) are performed
further away from the critical point in temperature and/or density, (ii) have to take into account
gravitation [182] and (iii) are made at non-zero frequency ω (e.g., in measurements of the
shear viscosity). The non-asymptotic theory also calculates a corresponding non-asymptotic
Kawasaki amplitude (353). Instead of the fixed-point value of the mode coupling, the solution
of the flow equation for the mode coupling appears. The flow parameter � is related to the
physical values of k, ξ, ω or �ρ = ρ −ρc (the deviation from critical density) by the matching
condition.

The matching condition taking into account all these effects reads

�8 =
(

ξ0

ξ(t,�ρ)

)8

+

(
2ωξ 4

0

�(�)

)2

, (360)

where ξ(t,�ρ) is calculated within the cubic model [183] using the heuristic expression for the
correlation length given in [184]. In the corresponding limits, (360) reduces to the matching
conditions (218)–(221).
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Figure 12. Left: fits (solid lines) of the shear viscosity in order to get the initial value f (t0). Data
from [185] (3He and 4He) and from [186] (Xe). Right: adjusted sound attenuation as a function of
temperature at different frequencies: theoretical result (solid lines), for details see the text. Data
from [187] (3He), [188] (4He) and [189] (Xe).

The non-asymptotic theory permits to relate different dynamic quantities and—after the
non-universal parameters have been fixed by using a certain set of data—to predict dynamic
quantities in regions where one has no data or to predict other dynamic quantities. As an
example, we show (figure 12) the calculation of the sound attenuation from a fit of the shear
viscosity. Note that the background value of the sound attenuation has been subtracted.
Therefore, the scale of the sound attenuation at the lowest frequency has been adjusted. In
this respect, it compares with mode coupling theory [180].

16.2.1. Viscosity on earth and in space. Usually, the shear viscosity in a fluid is measured
by the oscillating disc method where the frequencies of discs at the top and the bottom of
a cell of a certain height are measured. A reliable comparison of the asymptotic critical
exponent calculated for the shear viscosity is hindered by several influences. The shear
viscosity is strongly affected (i) by gravity (since gravity induces a density gradient over the
height of the cell) and (ii) by the finite frequency at which the experiment is performed. If
one uses the facility of zero gravity in the discovery, the frequency effects can be made more
visible.

Recently, such a zero gravity experiment has been performed [191] and a value xη = 0.069
for the critical exponent of the shear viscosity has been found. This value is in good agreement
with the two-loop RG result [172] and the self-consistent theory of [176] (see also table 9).
The effect of higher loop terms on the exponent xη has been considered in [192] with the result
that loop orders above the two-loop order are negligible for the exponent.

As already noted in zero gravity, frequency effects can be made visible and the viscoelastic
properties can be measured. At non-zero frequency, the viscosity becomes complex and both
the real and imaginary parts are measured. It is the imaginary part which is related to the
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Figure 13. Left: shear viscosity of xenon on earth and in space. Data on earth: [195], data in space:
[191]. Top: the shear viscosity as a function of relative temperature distance from the critical point
at different frequencies in space. Bottom: the same at a very low frequency in space and on earth
in cells with different heights. Solid curves: calculation of RG theory. Right: characteristic width
of the light scattering data in xenon at different wave vectors. Data: [196] (from [175]).

(This figure is in colour only in the electronic version)

viscoelastic behaviour. In one-loop order, the frequency-dependent shear viscosity has been
calculated [174] which allows to combine frequency and gravitational effects [193, 194]

η̄(t,�ρ, ω) = kBT

4π

ξ0

�f 2(�)�(�)
[1 + Et(f (�), v(�, t), w(�, ω))] (361)

with the functions

v(�, t) = ξ−2(t)(
ξ−1

0 �
)2 w(�, ω) = ω

2�(�)
(
ξ−1

0 �
)4 (362)

depending on the flow parameter �, the relative temperature distance t and the frequency ω.
The flow parameter � depends via the matching condition (360) on t, ω and the deviation from
the critical density �ρ. The one-loop contribution Et is a complicated function given in (5.3)
in [174].

The non-asymptotic theory has been used to analyse different experiments: (i) the
earthbound experiments of the shear viscosity of xenon in two different cells [195], (ii)
the zero gravity experiments and (iii) the characteristic frequency of Xe [196] (see figure 13
(right part) and the following subsection). One has to fix the non-universal parameters entering
the theoretical expression. These are the initial conditions of the flow equation for the mode
coupling f (�0) and the kinetic coefficient of the OP in the background �(�0). Since the
theoretical expressions were calculated in one-loop order, the exponent xη was allowed to



R282 Topical Review

differ from its one-loop value and was determined by a fit to the real part of the shear viscosity
of the zero gravity experiment. Then, one can calculate the earthbound shear viscosity without
any parameter as shown in figure 13. In the earthbound experiments, the asymptotic behaviour
is never reached for the cell heights taken in the experiments (see [175] and figure 13 (left
part)) due to gravity effects.

Agreement with the experiment can only be reached by introducing a scale factor for
the frequency which is thought to take into account higher order terms in the perturbational
calculation of the frequency dependence of the shear viscosity (a self-consistent two-loop
calculation points in that direction [197]). With such a factor very good agreement of the
RG theoretical results [34] is obtained for the real part and less for the imaginary part
[175, 198]. On earth one has a combination of frequency effects and gravity effects. Usually,
the gravity effects hide the frequency effects apart from very small cell heights (for details of
the combined effects see [174]).

A combination of the theoretical results of [199, 200] which describe the crossover of the
zero-frequency shear viscosity to the background and the scaling function of the frequency
dependent has been used in [191] to analyse the shear viscosity data in space. Using a
frequency scale factor in the comparison good agreement is also achieved for the viscoelastic
part (this discrepancy to the analysis in [175, 198] can be explained by the asymptotic value
of limT →Tc

Im(η̄)/Re(η̄) which is different in the two approaches)
An interesting relation between the complex shear viscosity measured in the critical region

at zero shear rate γ̇ , but finite frequency ωosc, and measurements of the real shear viscosity at
zero frequency, but at finite shear rate, related to the frequency ωosc has been found [201]:

|η̄(ω = ωosc, γ̇ ≡ 0)| = η̄(ω ≡ 0, γ̇ = ωosc/kCM). (363)

Such a type of relation is known in rheology of polymer melts as Cox–Merz rule. It is
not understood why such a relation should be valid but attempts have been made to consider
shear thinning in the critical region. There are results for shear thinning from mode coupling
theory [202] and quite recent results started calculations of a scaling function [203] taking into
account a finite frequency and a finite shear rate in order to reach a relation of the Cox–Merz
type. For a review of the effects of shear on fluids undergoing a phase transition see [177].

16.2.2. Thermal transport. Another transport coefficient of interest is the thermal
conductivity and/or the thermal diffusivity which has been calculated in one-loop order [174].
Using the matching condition (360) for ω = 0 allows to compare in the temperature and
density regions around the critical point (Tc, ρc) = (t = 0,�ρ = 0) and to relate the transport
coefficient to each other. In fact, via the Kawasaki amplitude the asymptotic divergencies of the
thermal conductivity and the shear viscosity are related. This also holds in the non-asymptotic
region.

16.2.3. Effective Kawasaki amplitude. Further away from the transition point an effective
critical amplitude from its experimental counterpart (350) may be defined. From (353) and
(354) in one-loop order follows [181]

R
(eff)
K = 3

2f 2(�)

[
1 − f 2(�)

16

] [
1 − f 2(�)

36

]
. (364)

Inserting the fixed-point value (in the limit � → 0) for the mode coupling f (�), one obtains
the universal asymptotic value. For finite distance from the critical point, the temperature
dependence of R

(eff)
K is obtained inserting the appropriate matching condition (218). The

temperature dependence of R
(eff)
K depends on the initial value of the mode coupling f in the
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background specific for the fluid system under consideration. However, in general, f (�)

decreases in the background and R
(eff)
K (t) increases further away from Tc. Since the initial

value of f can be found from comparing the theoretical expression for another transport
coefficient (lets take the shear viscosity) with experimental data, one can predict R

(eff)
K (t)

without any parameter involved (see, e.g., figure 2 in [205] and figure 1 in [174]).

16.3. Light scattering

Light scattering experiments in fluids measure the dynamical OP correlation function. Due to
fluctuations one expects deviation from a pure exponential decay of the critical fluctuations.
A first attempt to calculate this deviation has been made in [206] and agreement with light
scattering experiments near Tc (T − Tc = 1.8 mK) at the consolute point in a binary mixture
(belonging to the same universality class as pure fluids) has been found.

Another quantity of interest is the linewidth of the critical scattering function. This is
extracted from the scattering data assuming an exponential decay (Lorentzian line shape) as a
function of the wave vector k and the relative temperature distance from Tc or correlation length
ξ . Considering the whole kξ -plane the width crosses over from the asymptotic hydrodynamic
region where kξ < 1 and the width is proportional to k2 to the asymptotic critical region
where kξ > 1 and the width is proportional to kz. This crossover function has been calculated
in one-loop order by field theory in [175] and extended to cover also the crossover to the
background region.

The width is directly related to the OP vertex function at zero frequency

ωc(k, ξ) = �ϕϕ̃(k, ξ, ω = 0). (365)

The explicit expression is found to be

ωc(k, x) = �ask
zϕ

(
1 + x2

x2

)1−xλ/2

cna(k, x)xλf (k, x), (366)

with the non-asymptotic function

cna(k, x) =
[

1 +
k

k0

√
1 + x2

x2

]
(367)

and a non-asymptotic scaling function

f (k, x) = 1 − 3

38cna(k, x)
[−5 + 6x−2 ln(1 + x2)]. (368)

The scaling variable x, the non-asymptotic amplitude of the kinetic coefficient �as and a
non-asymptotic scale of the wave vector k0 are defined as

x = kξ(t) �as = �(�0)

(
f 2(�0)�0

(f �)2ξ0

)xλ

k−1
0 =

(
(f �)2

f 2(�0)
− 1

)
ξ0

�0
. (369)

It contains several non-universal parameters: (i) the initial value f (�0) of the dynamic mode
coupling at some background value of the flow parameter �0 and (ii) the initial value of
the kinetic coefficient �(�0). They appear when one solves for the flow equations of these
functions. The matching condition

ξ−2 + k2(
ξ−1

0 �
)2 = 1 (370)
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relates the flow parameter � to the wave vector k and the correlation length ξ . It contains
the asymptotic amplitude of the correlation length ξ0 (see (219)). This expression allows to
discuss the specific limiting power laws appearing in the different regions.

Asymptotic region. In the asymptotics, the non-universal value of f (�0) assumes the fixed-
point value f � and the non-asymptotic function becomes cna = 1 and drops out. Then, the
characteristic frequency (366) can be written in scaling form (f (k, x) is a function of x alone)

ωc(k, x) = �ask
zϕ

(
1 + x2

x2

)1−xλ/2 (
1 − 3

38
[−5 + 6x−2 ln(1 + x2)]

)
. (371)

This one-loop result might be compared with other approximations often calculated directly in
d = 3, see [52, 207, 208]. A field-theoretic calculation at d = 3 has been performed in [173].
Due to the fixed dimensional computation, an arbitrariness concerning the exponentiation of
certain terms remains. This arbitrariness is avoided in the approach using the RG equation
result for the vertex function and an appropriate matching condition [175].

Background region. In the background, the correlation length ξ is small or the wave vector k
is large (i.e., the limit ξk0 → 0 or k/k0 → ∞). Thus, cna is dominated by its second term and
f (k, x) reduces to 1 and the characteristic frequency (366) is obtained in a form

ωc(k, x) = �(�0)

(
1 − f 2(�0)

(f �)2

)xλ

k4

(
1 + x2

x2

)
, (372)

which recovers the van Hove result when the mode coupling in the background f0 is set to
zero. A non-asymptotic expression has been derived by Olchowy (see [180]) however the
function does not allow the limit of large values of the modulus of the wave vector, so formally
the limit of the van Hove result cannot be reached.

16.4. Computer simulations

Quite recently, molecular dynamics simulations have been used to predict asymptotic
dynamical critical exponents [209], which has been commented in [210, 211]. Whereas
this first paper considers mixtures (belonging to the same universality class as pure fluids, see
the following section) in [212], simulations have been performed for a Lennard–Jones fluid.
Both simulations extract an exponent which is easily related to the exponent of a diffusion
coefficient (mass diffusion or thermal diffusion) diverging as

D ∼ ξ−xD with xD = 1 + xη (373)

where the relation for xD follows from (285). In the first case, the value found xD =
1.26 ± 0.08 [209] is much larger than theoretical and experimental values [210], whereas the
second value xD = 1.023 ± 0.018 [212] is closer to these values but with its upper bound
lower than the latest accurate prediction xD = 1.0679±0.0007 [176] (see the discussion of the
asymptotics above). However, it seems to be promising that one observes in the simulations
the strong effect of fluctuations. In van Hove theory, the diffusion coefficient would diverge
as

D ∼ 1/Cp ∼ ξ−γ /ν = ξ−(2−η) (374)

since the kinetic coefficient is constant (we have used static scaling laws).
The discrepancy between the results of the simulations in a mixture and a pure fluid

could be resolved quite recently in [213]. A symmetric binary Lennard–Jones mixture has
been studied by a combination of semi-grandcanonical Monte Carlo and molecular dynamics
simulations. The results for the critical behaviour of the shear viscosity and the mutual
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diffusion coefficient are in agreement with the asymptotics of model H (xD = 1.068) provided
finite-size effects and background contributions are taken into account. A value of RK = 1.05
for the Kawaski amplitude has been adopted in the analysis.

17. Model H′ (gas–liquid and liquid–liquid transitions in binary mixtures)

Although the asymptotic universality class of a binary mixture is the same as the one of a pure
fluid [1], it has become obvious by experiment that, e.g., the critical behaviour of the transport
coefficients near the critical point in a mixture might be quite different. There exist two types
of critical points in normal liquid mixtures. The first one is the gas/liquid transition analogous
to simple fluids usually denoted as plait point. The second one is a demixing transition into
two phases of liquids with different mole fractions, which is called the consolute point. As an
example, we mention the behaviour of the thermal conductivity near a consolute point and a
plait point. The thermal conductivity measured in a mixture is the thermal conductivity at zero
mass flow and it is asymptotically finite (non-divergent) contrary to the thermal conductivity
at zero concentration gradient which would diverge asymptotically with the same exponent as
the thermal conductivity of a pure fluid. This holds at the consolute point as well as the plait
point. In the non-asymptotic region, it turns out that the behaviour in these two different cases
might be quite different. Whereas at the consolute point the measurable thermal conductivity
is almost constant, it seems to diverge for a plait point [13, 15]. However, this difference
could be clarified by taking into account the complete dynamical model in a non-asymptotic
field-theoretical calculation of the thermal conductivity. At both critical points, the model
equations have the same structure. We have to consider dynamical equations as in model H
(see the previous subsection), including a conserved OP φ0 and the transverse momentum
current �jt , which are now extended by a conserved scalar secondary density m0. The Poisson
brackets necessary for the reversible part of the equations have been discussed in (145)–(151).
The equations read

∂φ0

∂t
= �̊∇2 δH

δφ0
+ L̊∇2 δH

δm0
− g̊( �∇φ0)

δH
δ�jt

+ θφ, (375)

∂m0

∂t
= L̊∇2 δH

δφ0
+ µ̊∇2 δH

δm0
− g̊( �∇φ0)

δH
δ�jt

+ θm, (376)

∂�jt

∂t
= λ̊t∇2 δH

δ�jt

+ g̊
↔
T

{
( �∇φ0)

δH
δφ0

+ ( �∇m0)
δH
δm0

−
∑

k

[
jk

�∇ δH
δjk

+ ∇k
�j δH
δjk

]}
+ �θt . (377)

Different to the models C′, E′ and F′, the KC L is now the dissipative coupling between the
OP and the secondary density. Another difference is that only one mode coupling g̊ is present
due to translational invariance (see the discussion in subsection 7.2). Plait point and consolute
point differ in the assignment of the OP and the scalar secondary density to thermodynamic
densities. At the plait point, φ0 is related to the entropy density per mass σ and m0 is related
to the mass concentration c, while at the consolute point the assignment is reversed.

From the ζ - and β-functions (see the ζ -functions (A.75) and (A.76)) and the corresponding
fixed points, one finds the asymptotic behaviour of model H for the shear viscosity diverging
with the exponent xη, the kinetic coefficient of the mass diffusion diverging with xλ (see
table 10).
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Table 10. Asymptotic critical behaviour of the transport coefficients in mixtures and pure fluids.
Values calculated by RG xη ∼ 0.07 and xλ = 3 − η − xη . The thermal conductivity in mixtures is
given for zero mass current.

System Shear viscosity Thermal conductivity Thermal diffusion ratio Mass diffusion

Pure fluid η̄ ∼ ξxη κ ∼ ξxλ – –
mixture η̄ ∼ ξxη Constant kT ∼ ξ−(xλ−γ /ν) D ∼ ξxλ−γ /ν

17.1. Transport coefficients

Apart from the thermal conductivity κT , the dissipation in a binary liquid mixture is also
determined by the mass diffusion D and the thermal diffusion ratio kT as already presented in
3He–4He mixtures at the superfluid transition. Although the plait point and the consolute point
belong to the same universality class, the theoretical expressions of the transport coefficient
depend on the type of critical point in the mixture [218]. The critical behaviour of the
transport coefficients and the sound propagation also including the non-asymptotic region
in binary mixtures near a plait point has been presented in [15]. A more comprehensive
discussion, where the non-asymptotic critical behaviour of the transport coefficients near the
consolute point has also been considered, can be found in [16, 219].

The critical theory predicts that in binary mixtures at the plait point [15] and the consolute
point, the thermal conductivity (at zero mass current) shows an enhancement to a finite value
at Tc, which is in contrast to pure fluids where κT diverges at the critical point. While
at the consolute point the finite plateau value at Tc has been also verified experimentally
(see, e.g., [220]), the situation at the plait point appeared quite different. Contrary to the
theoretical predictions, the experimentally measured thermal conductivity revealed a divergent-
like behaviour in the accessible temperature region. This can be seen for instance in 3He–
4He mixtures at the plait point in figure 14 where the experimental results of the thermal
conductivity at a mole fraction X = 0.8 are plotted together with the data of pure 3He and pure
4He (left figure, second plot). The theoretical calculation (solid line) indeed shows that the
crossover to a finite value occurs far outside the region where experiments can be performed.
This situation should be improved by choosing a mixture of pure liquids with components
differing much more than 3He and 4He. For a 50% mixture of methane and ethane indeed the
onset of the crossover could be verified [13] and quantitatively corroborated by mode coupling
theory [221] (see the solid curve in the right part of figure 14).

There is a relation between the critical behaviour of the thermal diffusion ratio kT and the
mass diffusion D, however this relation depends on the type of phase transition in the mixture.

Consolute point. Near a consolute point, the relation simply reads

kT (t) = ρ

R

L̊

D(t)
, (378)

where R is the general gas constant and ρ is the mass density. Thus, the product of the two
transport coefficients should be a constant over the whole critical region. This has already
been observed long ago [222] (see figure 2 therein).

Plait point. A more complicated relation holds near the plait point [16], which is

kT (t) = − ρ

R

1

D(t)

[
L̊ +

µ̊

a

]
−
(

∂c

∂T

)
σ,P

. (379)
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Figure 14. Left: transport coefficients of 3He–4He mixtures at the plait point for the mole fraction
X = 0.8. The initial values of w(t0) and f (t0) are found from a fit of the shear viscosity. Then
the thermal conductivity κT , the thermal diffusion ratio kT and the mass diffusion coefficient D are
determined (solid curves). Additionally, thermal conductivity data for X = 0, 0.66, 1. The data
are taken from: η̄ [214], κT [215], kT [216] and D [217]. Right: 50% mixture of methane and
ethane (from [13]).

The product kT D is now temperature dependent, but the asymptotic power-law behaviour
obeys relation (378) (see, e.g., [223]). a ≡ (∂c/∂σ)�,P is only weakly varying with the
temperature.

As already mentioned, the non-asymptotic theory allows one to calculate the different
transport coefficients from the flow of the dynamic model parameters using theoretical
expressions of the transport coefficients. Analogous to model F′, the flow is determined
by the flow equations of types (207)–(214). In the current model, these equations simplify
considerably because w1 = �/λt = 0 and w2 = �/µ = 0 are irrelevant and only one
mode coupling parameter f = g/

√
�λt is present. Thus, only a flow equation of type (201)

for the mode coupling parameter and a flow equation of type (209) for the cross coefficient
w3 = L/

√
�λt remain. The corresponding ζ -functions ζ� , ζλt

and ζL of model H′ have to be
inserted (see (A.75) and (A.76)). The initial values are determined by the fit of the data of one
or more transport coefficients.

As an example of the calculation of transport coefficients at the plait point in figure 14,
the shear viscosity η̄, the thermal conductivity κT , the thermal diffusion ratio kT and the mass
diffusion coefficient D in 3He–4He mixtures at a mole fraction X = 0.8 are presented. The
initial values w3(t0) and f (t0) of the dynamic flow are completely determined by a fit of the
shear viscosity data (left figure, first plot). The remaining coefficients can then be calculated
(solid lines) without adjustable parameter.

An example for the consolute point, the 2-butoxyethanol–water mixture, is presented in
figure 15. Measurements of the shear viscosity [224] (and also of the correlation length ξ(t)

showing the crossover to a finite value in the background) and the thermal conductivity [225]



R288 Topical Review

Figure 15. Comparison of theory with 2-butoxyethanol–water data. Shown is the fit of the
correlation length ξ [225] used in the matching condition, the fit of the shear viscosity η (with
background subtracted) [225] and the thermal conductivity κT [224] and our prediction for the
mass diffusivity D [225] (from [219]).

have been performed. We have used the temperature dependence of the correlation length [70]
and determined the dynamic parameters, f and w3, from a fit of the viscosity and the thermal
conductivity in order to predict the mass diffusion D(t). A reevaluation and overview of the
critical exponents of the shear viscosity in several mixtures has been given in [226]. Recently,
measurements of the shear viscosity in nitrobenzene–alkane mixtures [227] confirmed the
critical exponent xη in agreement with earlier measurement and in agreement with the value
in pure fluids (see table 9).

17.2. Kawasaki amplitude

Analogous to pure fluids, it is possible to introduce a Kawasaki amplitude. The relation to
experimental quantities depends on the type of the critical point which is considered.

Consolute point. At the demixing transition, one only has to replace the thermal diffusion in
(350) by the mass diffusion coefficient. Thus, one obtains

R
(exp)

K,cons = 6πη̄Dξ

kBT
. (380)

Plait point. At the plait point, the situation is more complex. In [70], it has been shown that
an amplitude

R
(exp)

K,plait = 6πη̄ξ

ρkBT 2

(
∂T

∂σ

)
�,P

κT + ρT D

(
∂�

∂c

)
T ,P

(
kT

T
+

(
∂c

∂T

)
�,P

)2
 (381)
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can be introduced, which has the required properties. The above expression reduces in the
asymptotic limit to

R
(exp)

K,plait
t→0= 6πη̄Dξ

kBT
(382)

equal to the expression at the consolute point.
In the same way as for the gas–liquid point in a pure fluid, an effective Kawasaki amplitude

can be calculated at the plait point or at the consolute point in a mixture. It involves on the
one hand the non-asymptotic expression of the shear viscosity, which is the same for all types
of phase transitions in the mixture, on the other hand the expression for the mass diffusion is
different (compare the expressions for D given by the vertex functions (3.35) and (3.26) in [16]
respectively). Introducing the theoretical expressions for the quantities in (380) and (381),
it has been shown [70] that both expressions lead to the same effective Kawasaki amplitude
which reads in one-loop order

Reff
K = 3

2f 2(�)

(
1 − 1

16
f 2(�)

)(
1 − 1

36

f 2(�)

1 − w2
3(�)

)
. (383)

Inserting for the flow parameter, the matching condition (218) gives the temperature
dependence. The Kawasaki amplitude for a series of binary mixtures has been measured
and an overview has been given in [228]. In some cases the temperature dependence has
also been plotted showing either an increase (figure 6 therein for nitroethane–3-methypentane
mixture) or a decrease (figure 8 therein for the triethylamine–water mixture). This behaviour
in the background can be understood from the flow of the dynamic parameters involved.
The mode coupling f decreases whereas the time scale ratio w3 increases approaching the
background region. Depending on the strength of this decrease and increase both behaviour
can be obtained.

The light scattering spectrum in the hydrodynamic region has been considered in [229]
using the non-asymptotic expression near a consolute point for the transport coefficients
involved [221]. One observes two diffusive modes, whose nature depend on the concentration
of the mixture. At low concentration the slowest mode crosses over from a mass-diffusion-
like mode to a thermal-diffusion-like mode as one expects. No corresponding field-theoretical
calculation is available.

18. Models G and J (magnetic transitions in Heisenberg magnets)

The appropriate tool for investigating the critical properties of magnetic systems (i.e.,
Heisenberg magnets) is neutron scattering. An important quantity involved in the
measurements is the dynamical structure factor. Usually, it is assumed to have the shape of a
Lorentzian. Dynamic scaling however shows (see subsection 8.1) that this is not true near the
phase transition. The non-Lorentzian shape has to be considered in a quantitative comparison
with experiment and these fluctuation effects are visible in (i) constant energy scans and (ii)
constant wave vector scans. The shape function of ferromagnets at Tc has been calculated
within field theory in [26] and corroborated later by [28]. A RG calculation in the whole q–ξ–
ω-space, where the asymptotic crossover between the hydrodynamic and critical region could
be studied, was carried out in [29]. For the antiferromagnet, renormalization group theory fails
to reproduce the shape function observed in experiments. Whereas, experimentally, a central
critical component is observed this is not the case in theory (this also holds for calculations
within mode coupling theory).
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18.1. Model J (isotropic ferromagnet)

Model J only includes the equation for a conserved real OP �φ0 representing the local
magnetization (128). The reversible part of the dynamic equation following from the Poisson
brackets (129) describes the Larmor precession of the three-dimensional vector [230]:

∂ �φ0

∂t
= �̊∇2 δH

δ�φ0

+ g̊�φ0 × δH
δ�φ0

+ �θφ. (384)

The static functional H = HGLW is the GLW functional (24). In the paramagnetic phase, the
critical mode is the spin diffusion which at Tc has the critical dispersion

ωc(k) = Aϕkzϕ (385)

and in the hydrodynamic limit (ξk < 1) reads

ωc(ξ, k) = D(ξ)k2 (386)

with the critical diffusion coefficient

D(ξ) ∼ ξ−(zϕ−2). (387)

The asymptotic dynamical critical exponent is known exactly—in d = 3, zϕ = 2.5 −
η/2 ∼ 2.5 (see (289))—and deviates considerably from the van Hove value zϕ = 4−η (which
is the model B value). The value of the critical exponent has been verified experimentally
[231] and by computer simulations (see below).

As already mentioned, in the case of model J the upper critical dimension, where critical
fluctuations do not affect the kinetic coefficient, is d = 6.

A dynamical amplitude ratio is defined by

Rλ = �ξ(d−4)/4

g
√

χ
= lim

k→0

ωφ(k, ξ)

ω−(k, ξ)
(388)

where ω− is a characteristic frequency related to the spin-wave frequency below Tc and χ is
the static magnetic susceptibility. Another somewhat different dynamical ratio is

R̄λ = ωφ(k, ξ)

ω−(k, ξ → ∞)
(kξ)1−d/2 =

(
2

2ε

)1/2

[1 + 0.07ε] (389)

and has been calculated in two-loop order in [28].
The large upper critical dimension leads to larger fluctuation effects in d = 3 and therefore

ferromagnets are suitable for measuring deviations of the shape function from the Lorentzian
form. The OP correlation function has been calculated in one-loop order at Tc in [26, 28].
These calculations were extended to the whole k–ξ -plane in [29]. According to the scaling
form (224), the shape function reads

F(x, y) = 2 Re

(
1

−iy + [Z(x)�(x, iyZ(x)(1 + 1/x2)]−1

)
(390)

with x = kξ and the scaled frequency y = ω/ωc(ξ, k). The characteristic frequency ωc is
defined as the half width at half maximum in constant momentum scans. It also defines a
scaling function

ωc(ξ, k) = �kzϕZ(x)(1 + 1/x2). (391)

Once the self-energy � has been calculated in one-loop order, Z is found by the solution of
the equation defining the half width (228). Using these two functions in (390), the shape
function is calculated. However since this is a cumbersome method, a more suitable analytic
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Figure 16. Scattering intensity at large energy transfer shows a power-law behaviour with exponent
−2.31 ± 0.04. RG theory predicts −2.6. This demonstrates that the shape function definitively
deviates from a Lorentzian. From [234].

expression to find the shape for comparison with experiment has been given [232]. It consists
in writing � and Z as

�(x, iw) =
[(

1 +
b

x2

)2−ε/4

− aiw

]ε/(8−ε

, with w = ω

�kzϕ
, (392)

Z(x) =
[

1 − c arctan

(
a

1 + 1/x2

(1 + b/x2)2

)2−ε/4
]−1 (

1 +
b

x2

)−ε/4

. (393)

RG theory leads to the following values of the parameters a = 46, b = 3.16 and c = 0.51. In
d = 3, one has ε = 3.

The shape function has been measured in neutron scattering experiments at different
temperatures both in constant energy scans and constant momentum scans [231, 233].
According to table 2, the asymptotic behaviour of the scattering intensity S at Tc reads

S(k, ω → ∞) ∼ ω−υϕ ∼ ω−(zϕ+4)/zφ ∼ ω−2.6. (394)

The experiment definitively rules out a Lorentzian shape and finds an exponent of υϕ =
2.31 ± 0.04 over four decades of intensity [234].

Analysing the experimental scattering intensities for Ni [234] with the corresponding
RG theoretical result for the width (see figure 16) and shape function (see figure 17), good
agreement is obtained if one allows to adjust the parameters introduced in the analytic result
(392) and (393). Then one obtains a = −0, b = 3.2 and c = 1.5. With these parameters, one
obtains agreement also further away from Tc up to T = 1.21Tc describing the crossover to
an almost Lorentzian shape. A complication in the experimental determination of the scaling
function for the width is its dependence on the form of the shape. This is demonstrated in
figure 17 where the widths for two different shapes are compared.

There may be several reasons for the deviation from the theoretical result. On the
theoretical side, one does not know how large the corrections are due to two-loop order since
ε = 6 − d is large in d = 3. On the experimental side, the itinerancy of Ni may play
an important role. Similar comparisons for EuO [231] and EuS [236] agree with the RG
theoretical result. However in these systems one has to be cautious in the interpretation of
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Figure 17. Left: constant energy scans in Ni at Tc compared with the asymptotic result of RG
theory [29] (thick solid line), modified version (see the text) of the RG result (thin solid line) and
the Lorentzian shape (dashed line) (from [234]). Right: dynamic scaling function for the width of
constant wave vector scans. The thin line is based on a non-Lorentzian shape. The thicker line
is based on a Lorentzian shape calculated by mode coupling theory by Resibios and Piette [235]
(from [234]).

experiments since dipolar forces cause a crossover to another dynamical universality class.
This crossover may happen at different values of k, ξ or ω depending on the physical quantity.
For example, the crossover in the shape may be at different values as the crossover in the width
(for further discussion see the review [41]).

A more stringent test of RG theory is possible by Monte Carlo simulations [237]. Excellent
agreement with the RG value for the dynamical critical exponent has been obtained using
finite-size scaling (the simulations have been performed for a body-centred cubic magnet
with nearest neighbour interaction). The median frequency was used to extract the critical
exponent zϕ . This characteristic frequency can be calculated in simulations without making
an assumption about the shape of the dynamic correlation function. A numerical test of
the existing shape functions is more complicated and has to incorporate finite-size scaling
explicitly into the analytic expressions for the shape function. This is a nontrivial task which
needs more theoretical effort, better algorithms and much more CPU time.
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18.2. Model G (isotropic antiferromagnet)

The order parameter �φ0 for isotropic antiferromagnets is the non-conserved staggered
magnetization (133), while the magnetization (134) now represents the secondary density
�m0. The Poisson brackets (135)–(137) lead to Larmor precession terms of the staggered
magnetization around itself and the magnetization. Since the magnetization is conserved, it
belongs to the set of slow variables and has to be taken into account. Thus, we have two sets of
equations of motion containing besides the Larmor precession terms also a relaxational term
in the equations for the staggered magnetization and a diffusive term in the set of equations for
the magnetization [30]. Some terms have been shown in [136] to be irrelevant for the critical
dynamics, thus the relevant set of equations read

∂ �φ0

∂t
= −�̊

δH
δ�φ0

+ g̊�φ0 × δH
δ �m0

+ �θφ, (395)

∂ �m0

∂t
= λ̊∇2 δH

δ �m0
+ g̊ �m0 × δH

δ �m0
+ g̊�φ0 × δH

δ�φ0

+ �θm. (396)

The field-theoretic functions are those of the SSS model for n = 3 (see (A.30) A.31)).
It turns out that the time scale ratio w = �/λ is the important parameter of this model,
similar to the situation in model E. As in the case of the isotropic ferromagnet, the critical
exponent zϕ = zm = 3/2 for the isotropic antiferromagnet is known exactly, see (281).
Experiments on RbMnF2 find a slightly lower value of zm = 1.43 ± 0.04 [33]. Monte Carlo
simulations presented several values for the dynamic exponent zm = 1.48 ± 0.04 in [238]
then zm = 1.43 ± 0.03 in [239], but quite recently the simulations were improved to the value
zm = 1.49 ± 0.03 [240] in agreement with RG theory. One should remark that the critical
exponent zm has been extracted by considering the median frequency of the magnetization
correlation function. This procedure is allowed since at d = 3 and n = 3 the critical dynamics
of the isotropic antiferromagnet is described by the scaling fixed point (see section 15.1 for
the SSS model).

In one-loop order, the OP correlation function at TN has been calculated in [31] for
different n (using the SSS model [24] for generalizations to values of n �= 3)

Sφ(q, ω) = constant
1

q2−η

1

ωc(q)
F(ω/ωc(q)), (397)

with

F(y) = 1

y
Im

(
1 +

h(iywSC, (wSC)−1)

(iy)4/d

)
(398)

with the one-loop fixed-point value w1l
SC = 2n − 3 and the function h given in equation (13)

of [31]. For small arguments |iywSC| � 1, the shape reads

h(s,w) = sε/(4−ε)

(
1 − ε

4

[
ln(1 + s) + (1 + w(1 + s)) ln

(
1 +

1

w(1 + s)

)
− 1

])
. (399)

The field-theoretic calculation at TN for n = 3 confirmed earlier results [30] for the staggered
magnetization correlations and also agrees qualitatively with mode coupling theory at TN

[241, 242]. Note, however, that the shape function sensitively depends on w. This value of w

is changed in two-loop order and turns out to be quite different from the one-loop fixed-point
value (see the discussion in section 15.1). Indeed, the isotropic antiferromagnet is described
by the strong-scaling fixed point (at d = 3 and n = 3, see figure 11) with a two-loop fixed-
point value of w2l

SC = 0.96 three times smaller than the one-loop value. Effectively this value
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Figure 18. Left: constant wave vector scans of the staggered magnetization correlations in
RbMnF2 at TN compared with the asymptotic result of one-loop RG theory of [30] (dashed line),
modified version of the RG result (see [33]) (thin solid line) and Monte Carlo simulations (dotted
line) [242] . From [33]. Right: shape function of the SSS model in one-loop order as a function
of small values of the scaled frequency according to (398) and (399) at different values of wSC.

corresponds to the one-loop value of w1l
SC for n = 2 and for this value the shape function has its

peak at zero frequency (see figure 1 in [31]). In figure 18, the change of shape with the value
of wSC is shown6. If the time scales of the staggered magnetization and the magnetization are
almost the same, wSC ∼ 1, no side peak appears, if the time scale is much larger or smaller
than one, a side peak appears. Thus, a recalculation of the shape function keeping w as a
parameter seems to be indispensable in order to compare the RG result with experiment.

The comparison with experiment [33] (see figure 18) shows the discrepancy with the
strict one-loop shape function at TN . All other features predicted by RG theory are reproduced
by experiment and/or computer simulations. Thus, below TN longitudinal and transverse
components of S(k, ω) with respect to the staggered magnetization are consistent with theory.
All the expected features of propagating spin waves and a central peak due to spin diffusion
are reproduced.

Computer simulations [239] calculated the dynamic structure factor for the space- and
time-dependent spin–spin correlation function, the crossover from hydrodynamics to critical
behaviour (in the asymptotic region) and the dynamical critical exponent zm = 1.43 ± 0.03.
Although quite good agreement between simulations and experiment is obtained, the well-
known discrepancy to RG and mode coupling calculations (no central peak) at TN remained
(see figure 8 in [239]). Quite recently [240] the simulations results have been improved, much
better agreement with the critical exponent was achieved.

6 In two-loop order both fixed-point values, the value of the dynamical coupling f and of the time scale ratio w are
changed. This has not been taken into account in the simple argumentation presented here.
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The calculated dynamic magnetization correlation function was considered to be
essentially of Lorentzian form [30]. Applying the scaling laws for the dynamical function,
one concludes however that the decay of this function goes like ω−2.3 instead of ω−2. Thus, it
is not a Lorentzian at TN .

19. Critical dynamics in superconductors

In the last few years, a discussion is going on about the dynamical universality class of
superconductors. Sloppy formulated the debate is on the question whether the relevant
dynamical model belongs to the universality class of model A or model F. More precisely, one
may expect a new universality class depending on the set of dynamical equations describing
the dynamics of a superconductor and the resulting asymptotic dynamic exponents.

It has become clear that the static critical behaviour for type-I materials is driven by the
coupling of the OP (the macroscopic complex wavefunction) to the gauge field to a first-order
phase transition, while in the type-II materials a new so-called charged fixed point governs a
continuous phase transition (see, e.g., [243–247]).

In [248], a relaxational dynamics has been suggested. Starting from the static Hamiltonian

H =
∫

ddx

{
1

2
t0|ψ0|2 +

1

2
|(∇ − ie0A0)ψ0|2 +

u0

4!
|ψ0|4 +

1

2
(∇A0)

2

}
, (400)

where the complex wavefunction for the superconducting condensate ψ0 is the OP and A0

is the gauge field. The expressions for the β-functions in transverse gauge in two-loop
approximation read [244] (where f = e2)

βf = −εf +
n

6
f 2 + nf 3, (401)

βu = −εu +
n + 8

6
u2 − 3n + 14

12
u3 − 6uf + 18f 2 +

2n + 10

3
u2f

+
71n + 174

12
uf 2 − (7n + 90)f 3. (402)

The use of the ε-expansion in order to find the static fixed points leads for n = 2 to complex
fixed-point values. Without ε-expansion, a straightforward solution for u and f of the nonlinear
two-loop β-functions also does not lead to a real fixed point. Therefore, summation techniques
have to be used [247]. Then four fixed points are found: (i) the Gaussian (u = 0, f = 0), (ii)
the uncharged XY fixed point (u �= 0, f = 0), (iii) the charged XY fixed point (u �= 0, f �= 0)

and (iv) a tricritical fixed point (u �= 0, f �= 0). For initial values u/f large enough, the charged
fixed point is the stable one otherwise one obtains runaway solutions indicating a first-order
phase transition. At the stable fixed point, the ζ -function of the gauge field assumes the exact
result [245]

ζ �
A = ε (403)

following from gauge invariance. For a more detailed discussion of the statics see [249].
The simplest equations of motion for the two non-conserved densities ψ0 and A0 are two

relaxational equations as suggested in [248]:

∂ψ0

∂t
= −�ψ

δH({ψ0,A0})
δψ+

0

+ θψ, (404)

∂A0i

∂t
= −�A

δH({ψ0,A0})
δA+

0i

+ θAi
. (405)
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One may retrieve the second equation from Maxwell’s equations which shows that the inverse
relaxation rate of the gauge field is related to the bare conductivity of the electric current [248].
Assuming that the dynamical critical behaviour is related to a strong-scaling charged fixed
point, where the time scale ratio

w = �φ

�A

(406)

has a finite non-zero fixed-point value, the OP relaxation rate and the gauge field relaxation rate
scale in the same manner. This leads to the prediction that the electric conductivity diverges
at Tc like

σ(k = 0, ω → 0) ∼ ξzϕ+2−d (407)

where the value of the dynamic exponent zϕ depends on the value of w� and in the one-loop
calculation in [248] has been found as (in the Feynman gauge)

zϕ = 2 + ε

(
3

2w�
− 1

)
. (408)

In order to get a reliable value of w�, one has to go at least in statics beyond the one-loop
order [250]. The dynamical critical exponent zϕ strongly depends on the fixed-point value of
w. The one-loop result of [248] suggests that zϕ > 4 which is larger than for the diffusive
model B. Various values of zϕ have been reported: (i) from experiments zϕ = 1.5 in [251],
zϕ = 2.3–3.0 in [252], zϕ ∼ 2 in [253]; (ii) from Monte Carlo simulations zϕ ∼ 1.5 [254, 255]
and zϕ ∼ 2 in [256]. A calculation of the conductivity shape function has been performed in
[257] for a pure relaxational dynamics (model A) for the OP. However, the experimental value
of zϕ = 2.65 observed in the shape function is not compatible with the model A value.

Quite recently, using scaling arguments it has been argued [258] that zϕ = 3
2 exactly and

this has been interpreted in favour of the model F universality class however no equations of
motion have been defined. The thermal conductivity at this phase transition is predicted to be
smooth and non-singular at the phase transition [259].

20. Short remarks on other topics

20.1. Influence of disorder on critical dynamics

So far only homogeneous systems have been considered in this review. However, the critical
behaviour of pure systems might be changed by introducing imperfections into a critical
system. The changes depend on the type of disorder. It may be introduced: (i) by dilution
(random site [260] or (ii) random bond [261] systems) or (iii) as a random field [262] or (iv)
random connectivity [263, 264] or (v) as an anisotropy [265]. The defects may be correlated
[266, 267] or not.

Whether a change in critical behaviour can be expected is answered by the Harris
criterion [268] for systems with short-range-correlated dilution stating that a new diluted
critical behaviour might only appear if the specific heat of the pure system is diverging. The
disordered critical behaviour then has a non-diverging specific heat. Since the borderline
value nc between a diverging and non-diverging specific heat at space dimension d = 3 lies
between OP dimensions n = 1 (Ising model) and n = 2 (XY model) only the Ising case might
belong to a new universality class. In consequence, this result led to the conclusion that for the
critical dynamics the coupling of conserved quantities to the OP is in any case of no relevance
[269, 270]. The argument was the following: for the critical dynamics of a relaxational model,
it has been shown (see section 11.1 and [20, 23]) that the coupling to a conserved density is
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relevant if the specific heat diverges. Due to disorder, this is never the case and therefore the
coupling is of no relevance. Therefore, most of the papers considered only the relaxational
dynamics (model A) of Ising systems [104, 271–273].

However, this argumentation is based on the asymptotic properties of the disordered
model. Experimental data and computer simulations made clear that in most cases one
observes non-asymptotic critical behaviour, described often by non-universal, e.g., dilution
dependent, effective exponents (see, e.g., [260, 274]). In the non-asymptotic region the Harris
criterion does not hold and therefore one has to consider in dynamics the coupling to the
conserved density and its effects on the critical behaviour. In addition, one is not restricted
to the Ising case since already in statics the effective critical behaviour for n > 1 is different
from the pure case [274]. Indeed in many systems (e.g., with site disorder) effective critical
behaviour can explain the experimental situation [261, 275].

Therefore, for several systems the effective dynamical critical behaviour has been studied
recently: in model A disorder caused by correlated defects [276], for model C site dilution
[277] and random anisotropy [278]. Also computer simulations have been performed using
the cluster algorithm [279] and Metropolis algorithm [280–282].

20.2. Critical dynamics near Lifshitz points, dipolar systems

Competing interactions may lead at special points in the thermodynamic space to a dispersion
in the Hamiltonian where the usual gradient term is zero and higher order derivations have
to be taken into account in a Landau–Ginzburg expansion. In general, this may happen in a
subspace only, then one has a Hamiltonian

HGLW =
∫

ddx

{
1

2
r̊ �ϕ+

0 �ϕ0 +
1

2

m∑
i=1

∇2
i �ϕ+

0 ∇2
i �ϕ0 +

1

2

d∑
i=m+1

∇i �ϕ+
0 ∇i �ϕ0 +

ů

4!
(�ϕ+

0 �ϕ0)
2

}
. (409)

Such a functional describes an m-axial Lifshitz point (for a review see [283], for a field-
theoretic two-loop calculation of the statics see [284]). Whereas Lifshitz points are realized
mainly in solid-state systems (magnetic or ferroelectric) with small spatial anisotropy m = 1,
in liquid polymer blends isotropic Lifshitz points might be realized [285–287].

Not much work has been done in dynamics for these systems. The asymptotic critical
exponents of Heisenberg magnets have been discussed within mode coupling theory in [288]
finding break down of strong scaling due to the critical spatial anisotropy. Model A and/or
model B like dynamics have been considered in [289, 290].

There are also other systems with spatial anisotropy like uniaxial dipolar systems [291].
So far Larmor precession terms have not been taken into account. Even more complicated
systems exist (e.g., the ferroelectric Sn2 P2 S6 compound) where spatial anisotropies in the
dispersion due to Lifshitz terms as well as uniaxial dipolar interactions are present [292].

21. Conclusion and outlook

Considerable progress has been made in the field of critical dynamics since the middle of
the 1970s. The comparison with experiment and computer simulations has reached a high
quantitative level. Non-asymptotic aspects became of interest and extended the possibility
to test RG theory in more details. Calculations to higher loop order became possible and
indispensable in order to cope the experimentally reached accuracy.

Problems with the ε-expansion due to logarithmic terms in the fixed-point equations can
be avoided by directly solving the specific equations for fixed points or stability exponents.
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In this way, the dynamic time scale ratio can be treated in a proper way and non-analyticities
can be handled. This lead to solutions of longstanding problems in model C and model SSS.

In comparison with experiment amplitude ratios and shape functions play a fundamental
role. Less results are known for crossover functions between different critical points and
calculations in the ordered phase are rare (also due to the increased complexity). More results
are expected for the critical dynamics under non-equilibrium conditions, in reduced geometry
and for finite-size systems [293]. Further work might be expected for other systems such as
polymers and their solutions or liquid crystals.

Promising new developments may be expected from the application of the nonperturbative
RG approach (for the application in static critical phenomena see the review [294]) theory to
dynamics. In several systems the crossover between two critical points may be described by
field theoretical models with different upper critical dimensions making it difficult to find a
consistent renormalization for both models.

Computer simulations use algorithms which are different from the Metropolis algorithm
and define new dynamic critical exponents [295–297]. Its a challenge for dynamic RG theory
to calculate these exponents within appropriate formulated dynamic models.
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Appendix A. Field-theoretic functions in two-loop order for different models

In this appendix, a summary is given over two-loop expressions of the dynamic ζ -functions
in the different established models. In order to make the results comparable only expressions
are presented, which are calculated with the same renormalization group approach, namely,
minimal subtraction scheme. Quite recently, the large-order asymptotics for dynamical
systems has been considered and the effect of the instantons discussed. The result demonstrates
that the series expansions for the dynamic models related to the static GLW model are
asymptotic with zero radius of convergence [298–300]. The instantons lead to a factorial
growth of the Nth-order contribution to the expansion.

A.1. Models without a secondary density

Model A/A�. Within model A� (complex �), the only dynamic ζ -function is

ζ
(A�)
� (u, �) = n + 2

36
u2

(
LA − 1

2

)
, (A.1)

where

LA = L0 + x1L1 (A.2)

has been introduced. In the complex case, the quantities in (A.2) are

L0 = 2 ln
2

1 + �+

�

, L1 = ln

(
1 + �+

�

)2
1 + 2�+

�

(A.3)
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and

x1 = 2 +
�

�+
. (A.4)

In model A, � is real (� = �+) and LA reduces to

LA = 3 ln 4
3 . (A.5)

The dynamic ζ -function becomes independent of � and can be written as [97]

ζ
(A)
� (u) = n + 2

36
u2

(
3 ln

4

3
− 1

2

)
. (A.6)

A.2. Models with one secondary density

In this appendix, models including either one scalar density, as described by the static functional
(40), or one vector or vector component, as described by the static functional (41), are
considered.

Model C/C�. In the case of a complex OP kinetic coefficient � (model C�), a complex time
scale ratio

w = �

λ
(A.7)

is introduced. The dynamic ζ -function for the OP kinetic coefficient is [23, 80]

ζ�(u, γ, �,w) = ζ
(A�)
� (u, �) +

wγ 2

1 + w

[
1 − n + 2

6
u(1 − LA)

+
1

2

wγ 2

1 + w

(
n + 2

2
LA − n

2
+ Y(w)

)]
(A.8)

where we have defined the complex function

Y(w) = 1

1 + w

[
w + (1 + 2w) ln

(1 + w)2

1 + 2w

]
. (A.9)

ζ
(A�)
� (u, �) has been introduced in (A.1) and LA is defined in (A.2)–(A.4). In (A.8), relations

(50) have been used in order to introduce the GLW parameters r and u instead of τ and ũ. In
the case of a real � (model C) also w is real and one simply has to insert LA = 3 ln(4/3) and
to replace ζ

(A�)
� (u, �) with ζ

(A)
� (u).

The ζ -function for the kinetic coefficient of the secondary density

ζλ = 2ζm = n

2
γ 2 (A.10)

is determined by statics because the model includes no mode couplings. All dynamic
contributions to this function are proportional to mode couplings.

Model E/E�. Introducing a complex time scale ratio w as defined in (A.7) and mode coupling
parameters

F = g

λ
and f = F√

w′ = g√
�′λ

, (A.11)

the dynamic ζ -function of the OP for a complex � (model E�) reads

ζ�(u,w, F ) = − F 2

w(1 + w)

{
1 +

2

3
u(L0 + x−x1L1) − F 2

w
ME(�,w)

}
+ ζ

(A�)
� (u, �) (A.12)
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with

ME(�,w) = 1

2(1 + w)
[2(L0 + x−L1) + LR + Y(w)], (A.13)

where Y(w) has been introduced in (A.9), and

LR =
[
x+ +

�

�+
+ x2

+

(
x2

+ + 2
( �

�+

)2)] L1

x+
− 3

�

�+
. (A.14)

The parameters L0, L1 and x1 are defined in (A.3) and (A.4), while

x± = 1 ± �

�+
, (A.15)

ζ
(A�)
� is given in (A.1) for general n. In (A.12) it is taken at n = 2.

The dynamic ζ -function corresponding to the kinetic coefficient λ of the secondary density
reads

ζλ(w, f ) = −f 2

2
(1 + f 2NE(w)) (A.16)

where NE(w) is the real function

NE(w) = N (w) + N +(w)

2
(A.17)

with

N (w) = 1

2(1 + w)

[
1

2
+ w(1 − W(m)L(m)) − ln

1 + w

1 + w+

]
. (A.18)

In the above expression, the quantities

W(m) = w + w+ + ww+, L(m) = ln

(
1 +

1

W(m)

)
(A.19)

have been defined.
In the case of a real kinetic coefficient � (w′′ = 0 and w′ = w), (A.12) and (A.16)

simplify to [4, 100]

ζ�(u,w, f ) = − f 2

1 + w
(1 − f 2ME(w)) + ζ

(A)
� (u) (A.20)

ζλ(w, f ) = −f 2

2
(1 + f 2NE(w)) (A.21)

which are the ζ -functions of model E. ζ (A)
� (u) can be taken from (A.6) at n = 2. The functions

(A.13) and (A.17) reduce to

ME(w) = 1

2(1 + w)

[
27

2
ln

4

3
− 3 + Y (w)

]
(A.22)

where Y (w) has the same form as Y(w) in (A.9) but is now a real function because w is real,
and N (w) reduces to

NE(w) = 1

2(1 + w)

[
1

2
+ w − w2(2 + w) ln

(1 + w)2

w(2 + w)

]
. (A.23)

Model F. The dynamic model for 4He at the λ-transition always has a complex � because it
includes a static coupling γ as well as a mode coupling g, which is in contrast to all other
models (except model F′ of course) considered in this review where only either γ or g exists.
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When both couplings are present, perturbational terms proportional to igγ contribute to �′′

and it would be inconsistent to consider a real � only. With the time scale ratio w from (A.7)
and mode couplings defined in (A.11), the ζ -function of the OP kinetic coefficient � reads

ζ�(u, γ, �,w, F ) = D2

w(1 + w)
− 2

3

uD

w(1 + w)
A(γ, �,w, F )

− 1

2

D2

w2(1 + w)2
B(γ, �,w, F ) + ζ

(A�)
� (u, �) (A.24)

where a coupling D = wγ − iF has been introduced. The model A� function ζ
(A�)
� has already

been presented in (A.1) and here has to be taken at n = 2. The complex functions A and B
are defined as

A(γ, �,w, F ) = wγ (1 − x1L1) + iFx−x1L1 − DL0, (A.25)
B(γ, �,w, F ) = w2γ 2(1 − 2x1L1) − (iF)2(2x−L1 + LR)

+ 2wγ iF(1 + 2x−x1L1) − D2[2L0 + Y(w)]. (A.26)

The logarithmic terms L0, L1 and LR have been defined in (A.3) and (A.14), while the
parameters x1 and x± are given in (A.4) and (A.15). Y(w) has been defined in (A.9).

The dynamic ζ -function of the kinetic coefficient of the secondary density reads

ζλ(γ,w, F ) = γ 2 − f 2

2
(1 + Q(γ,w, F )). (A.27)

The function Q(γ,w, F ) contains all higher loop orders starting with two-loop order. It is a
real function and can be written as

Q(γ,w, F ) = 1
2 Re[X2(γ,w, F )]. (A.28)

The complex function X2(γ,w, F ) reads

X2(γ,w, F ) = D

w′(1 + w)

[
D

(
1

2
+ ln

1 + w

1 + w+

)
+ D+(1 + w) − (W(m)γ + wiF)W(m)L(m)

]
(A.29)

where we have introduced the definitions for W(m) and L(m) in (A.19).

SSS model. The two-loop expressions for the dynamic ζ -functions are given in [25] and are
in agreement with the results presented in [4] (correcting one misprint in (4.10)). This also
corrects expressions which have been presented in [99].

We can write

ζ� = −f 2(n − 1)

1 + w
(1 − f 2MSSS(w)) + ζ

(A)
� (u) (A.30)

ζλ = −f 2

2
(1 + f 2NSSS(w)) (A.31)

with functions

MSSS(w) = 1

2(1 + w)2

[
1

2
(1 + w)(27 ln

4

3
− 6) + (n − 1)w + 2(2 − n)w(1 + w) ln 2

+ (1 + nw) ln(1 + w) + (1 + (2 − n)w)(1 + 2w) ln
1 + w

1 + 2w

]
(A.32)

and

N(w)SSS = 1

2(1 + w)

[
1

2
(3 − n) + w − (2 − n + w)w(2 + w) ln

(1 + w)2

(2 + w)w

]
. (A.33)
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Model DP. The results for this model have been presented in [4]. In our notation, we can write

ζ� = − f 2

1 + w
(1 − f 2MDP(w)) + ζ

(A)
� (u), (A.34)

ζλ = −f 2n

4
(1 + f 2NDP(w)) (A.35)

with functions

MDP(w) = 1

8(1 + w)2

[
9(4 + n)(1 + w) ln

4

3
− (4 + 2n)w + 2(2 − n)w(1 + w) ln 2

+ (1 + nw) ln(1 + w) − (8 + 2n) + 4(1 + 2w) ln
(1 + w)2

1 + 2w

]
(A.36)

and

NDP(w) = 1

2(1 + w)

[
1

2
+ w − (2 + w)w2 ln

(1 + w)2

(2 + w)w

]
. (A.37)

Model H. The ζ -functions in the minimal subtraction scheme have been given in [34] in
one-loop order. Subsequently, a two-loop calculation of these functions has been presented in
[172] (see equation (46) therein). The ζ -functions read

ζ� = −3f 2

4
+

Bf 4

32
+ ζφ(u), (A.38)

ζλt
= −f 2

24

(
1 +

5f 4

16

)
(A.39)

with B = −0.0623. The two-loop expression for ζφ(u) is presented in (179) and has to be
taken for n = 1.

A.3. Models with two secondary densities

When more than one secondary density is present in a dynamic model, the kinetic coefficients
of them build a matrix Λ (see (325) for instance). For two secondary densities, this matrix is

Λ =
(

λ L

L µ

)
. (A.40)

In models with two secondary densities of different tensor character L = 0. Because
the dynamic perturbation expansion gets extremely extensive when a nondiagonal kinetic
coefficient L is present, it is absolutely necessary to diagonalize the matrix (A.40). The
eigenvalues of this matrix are

λ1 = 1
2 (λ + µ + K) , λ2 = 1

2 (λ + µ − K) (A.41)

with

K =
√

(λ − µ)2 + 4L2. (A.42)

The diagonal dynamic coefficient matrix is then obtained by

Λ̄ ≡
(

λ1 0
0 λ2

)
= RT ·Λ ·R. (A.43)
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The superscript T denotes the transposed matrix. The transformation matrix R is obtained
from the eigenvectors corresponding to (A.41). It is an orthogonal matrix (R−1 = RT ) and
has the structure

R =
(

R11 −R21

R21 R11

)
(A.44)

with

R11 =
√

λ − µ + K

2K
, R21 =

√
µ − λ + K

2K
. (A.45)

Dynamic models with two scalar secondary densities are transformed to models with a
diagonal matrix (A.43) for the corresponding kinetic coefficients. Thus, all static and dynamic
parameters have to be transformed too. The results for the dynamic ζ -functions are then
explicitly presented in the parameters of the dynamic diagonal model. Analogous to the
dynamic parameters (203)–(205) the parameters for dynamic diagonal model

w̄1 = �

λ1
, w̄2 = �

λ2
(A.46)

F̄1 = ḡ1

λ1
, F̄2 = ḡ2

λ2
(A.47)

are introduced. The relation between the two sets of parameters is determined by the
transformation matrix (A.45). Using the definition (203) of the time scale ratios, the
coefficients of the transformation matrix (A.45) can be rewritten as

R11 =
√

w2 − w1 + Kw

2Kw

, R21 =
√

w1 − w2 + Kw

2Kw

(A.48)

with

Kw =
√

(w2 − w1)2 + 4w1w2w
2
3. (A.49)

Inserting the eigenvalues (A.41) into (A.46) and using the definition of the time scale ratios
(203), one obtains

w̄1 = 2w1w2

w1 + w2 + Kw

, w̄2 = 2w1w2

w1 + w2 − Kw

. (A.50)

Applying the same procedure to the mode coupling parameters (A.47), the relations between
the mode coupling parameters in the diagonal and nondiagonal model read

F̄1 = 2(w2R11F1 + w1R21F2)

w1 + w2 + Kw

, F̄2 = 2(−w2R21F1 + w1R11F2)

w1 + w2 − Kw

. (A.51)

The dynamic diagonalization procedure described above generates a second static coupling
γ , thus in the dynamic diagonal model two couplings γ̄1 and γ̄2 exist. Both static couplings
are related to the single coupling γ in the original model by the relations

γ̄1 = R21γ, γ̄2 = R11γ. (A.52)

Model C′/C′�. The ζ -function of the OP kinetic coefficient reads [71]

ζ�(u, {γ̄ }, �, {w̄}) = ζ
(A�)
� (u, �) +

∑
i

w̄i γ̄
2
i

1 + w̄i

{
1 − n + 2

6
u(1 − LA)

+
1

2

∑
j

w̄j γ̄
2
j

1 + w̄j

[
n + 2

2
LA − n

2
+ Yij ({w̄})

]}
(A.53)
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where the brackets {·} denote the set of parameters embraced. In (A.53), we have introduced
the complex function

Yij ({w̄}) = 1

1 + w̄i

(
w̄i + w̄2

j l
(a)
ij − w̄2

i l
(a)
j i + (1 + w̄i − w̄j )(1 + w̄i + w̄j )l

(s)
ij

)
. (A.54)

Note that the above expression is valid not only for two secondary densities but also for an
arbitrary number. The indices run in this case over all secondary densities. ζ

(A�)
� (u, �) has

been introduced in (A.1). The logarithmic terms are defined as

l
(s)
ij = ln

(1 + w̄i)(1 + w̄j )

1 + w̄i + w̄j

, l
(a)
ij = ln

1 + w̄i

1 + w̄i

w̄j

. (A.55)

Setting i = j and removing the summation leads to the corresponding expression (A.8) for
model C/C�. LA has been defined in (A.2) for complex � and reduces to LA = 3 ln(4/3) for
real �.

According to (A.9), the dynamic ζ -functions for the secondary densities are

ζλ = 0, ζL = ζm = n

4
γ 2, ζµ = 2ζm = n

2
γ 2. (A.56)

Model E′/E′�. For complex � (model E′�), the ζ -function of the OP kinetic coefficient reads

ζ�(u, �, {w̄}, {F̄ }) = −
∑

i

F̄ 2
i

w̄i(1 + w̄i)

{
1 +

2

3
u(L0 + x−x1L1)

−
∑

j

F̄ 2
j

w̄j

Mij (�, {w̄})
}

+ ζ
(A�)
� (u, �) (A.57)

with

Mij (�, {w̄}) = 1

2(1 + w̄j )
[2(L0 + x−L1) + LR + Yij ({w̄})]. (A.58)

The complex function Yij ({w̄}) is defined in (A.54). The parameters xi and Li have been
introduced in (A.3), (A.14), (A.4) and (A.15). ζ

(A�)
� is (A.1) taken at n = 2.

From the structure of the loop expansion follows that the ζ -functions for the KCs of the
secondary densities are

ζλ = −f 2
1

2
(1 + Q(u, {w̄}, {f̄ })), (A.59)

ζµ = −f 2
2

2
(1 + Q(u, {w̄}, {f̄ })), (A.60)

ζL = −f1f2

2w3
(1 + Q(u, {w̄}, {f̄ })). (A.61)

The function Q contains all higher order contributions of loop expansion beginning with two
loop. Note that the parameters wi , fi outside the brackets are defined in the dynamically
nondiagonal model (see (203)–(205)), while Q is considered as a function of the parameters
w̄i and f̄ i in the dynamically diagonal model (see (A.46) and (A.46)). In order to obtain Q as
a function of wi, fi , one has to insert the transformation rules (A.50) and (A.51). In two-loop
order, the function Q reads

Q(u, {w̄}, {f̄ }) =
∑

j

f̄ 2
jNE(w̄j ). (A.62)

The function NE(w) is given in (A.17) and (A.18).
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In the case of a real kinetic coefficient � (model E′), the ζ -function (A.57) reduces to [17]

ζ�(u, {w̄}, {f̄ }) = −
∑

i

f̄ 2
i

1 + w̄i

{
1 −

∑
j

f̄ 2
jMij ({w̄})

}
+ ζ

(A)
� (u) (A.63)

where w̄ = w̄′ is now a real quantity. Inserting w′′ = 0, w′ = w into (A.58), one obtains
immediately

Mij ({w̄}) = 1

2(1 + w̄j )

[
27

2
ln

4

3
− 3 + Yij ({w̄})

]
(A.64)

where Yij ({w̄}) is identical to (A.54) but with real w̄. The ζ -functions ζλ, ζL and ζµ are in this
case also given by (A.59)–(A.62) but with the function NE(w) from (A.23).

Model F′. The ζ -function of the OP kinetic coefficient reads [72, 139, 157]

ζ�(u, γ̄ , {w̄}, {F̄ }) =
∑

i

D̄2
i

w̄i(1 + w̄i)
− 2

3

∑
i

uD̄i

w̄i(1 + w̄i)
Ai (γ, �, {w̄}, {F̄ })

− 1

2

∑
i,j

D̄iD̄j

w̄i(1 + w̄i)w̄j (1 + w̄j )
Bij (γ, �, {w̄}, {F̄ }) + ζ

(A�)
� (u, �) (A.65)

where we have introduced the coupling

D̄i = w̄i γ̄i − iF̄i . (A.66)

ζ
(A�)
� (u, �) can again be taken from (A.1) at n = 2. The functions Ai and Bij are defined as

Ai (γ, �, {w̄}, {F̄ }) = w̄i γ̄i(1 − x1L1) + iF̄ix−x1L1 − D̄iL0 (A.67)

Bij (γ, �, {w̄}, {F̄ }) = w̄i γ̄i w̄j γ̄j (1 − 2x1L1) − iF̄i iF̄j (2x−L1 + LR)

+ (w̄i γ̄i iF̄j + w̄j γ̄j iF̄i)(1 + 2x−x1L1) − D̄iD̄j [2L0 + Yij ({w̄})] (A.68)

with the complex function Yij ({w̄}) from (A.54). All parameters Li and xi have already been
defined in the previous subsections.

The structure of the loop expansion implies that the ζ -functions for the KCs of the
secondary densities are of the form

ζλ = −f 2
1

2
(1 + Q(u, {γ̄ }, {w̄}, {f̄ })), (A.69)

ζµ = γ 2Bψ2(u) − f 2
2

2
(1 + Q(u, {γ̄ }, {w̄}, {f̄ })), (A.70)

ζL = 1

2
γ 2Bψ2(u) − f1f2

2w3
(1 + Q(u, {γ̄ }, {w̄}, {f̄ })). (A.71)

The above ζ -functions are valid in all orders of loop expansion. Quite analogous to model
E′� (see the previous item), the function Q contains all higher order dynamic contributions
of loop expansion beginning with two loop. The function Bψ2(u) is determined by the
renormalization of the specific heat within the GLW model. In two-loop order at n = 2 we
have Bψ2(u) = 1. The parameters wi, fi outside the brackets are defined in the dynamically
nondiagonal model (see (203)–(205)), while Q is considered as a function of the parameters
w̄i, f̄ i in the dynamically diagonal model (see (A.46) and (A.46)). In order to obtain Q as
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a function of wi and fi one has to insert the transformation rules (A.50) and (A.51). The
function Q has the structure

Q = 1
2 Re[X2] (A.72)

from which immediately follows that it is a real quantity. X2 reads

X2 =
∑

k

D̄k

w̄′
k(1 + w̄k)

[
D̄k

(
1

2
+ ln

1 + w̄k

1 + w̄+
k

)
+ D̄+

k (1 + w̄k) −
(
W

(m)
k γ̄k + w̄kiF̄k

)
W

(m)
k L

(m)
k

]
.

(A.73)

According to (A.19), we have introduced the definitions

W
(m)
k = w̄k + w̄+

k + w̄kw̄
+
k , L

(m)
k = ln

(
1 +

1

W
(m)
k

)
. (A.74)

The functions ζ� and Q are invariant under transformation (A.44). Therefore, they are
functions of the parameters wi and Fi of the dynamically nondiagonal model by inserting the
transformation relations (A.50)–(A.52) for the time scale ratios and couplings. This would
lead to very extensive expressions, thus it is more useful to present them as functions of w̄i

and F̄i in the following.

Model H′. So far the field-theoretic functions for model H′ have only been calculated in
one-loop order [16]. The ζ -functions which are also present in model H (compare (A.38) and
(A.39)) read

ζ� = −3

4
f 2, ζλt

= − 1

24

f 2

1 − w2
3

(A.75)

with w2
3 = L2/(�µ) and f 2 = g2/(�λt ). The additional ζ -functions appearing in model H′

are related to static ζ -functions. They can be written as

ζL = 1
2ζφ + ζm, ζµ = 2ζm. (A.76)

In one-loop order, we have ζφ = 0 and ζm = (n/4)γ 2. Although the model contains two
secondary densities, the ζ -functions simplify considerably because w1 = 0 and w2 = 0 and
only one mode coupling f is present.

Appendix B. Notations

Table B1. Notations and their meaning.

Notation Quantity Ia

ai General set of densities
Ad Geometric factor (99)
βindex β-function (175); its zeros give fixed points
f Mode coupling parameter; f = g/(�λ)1/2

F Mode coupling parameter; g/λ

Findex Shape function
g Coefficient in the Poisson bracket relation
� Relaxation rate of a non-conserved OP

�
(s)
ai aj

Genuine static vertex function

�
(d)
ai ãj

Genuine dynamic vertex function
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Table B1. (Continued.)

Notation Quantity Ia

γ Static coupling in asymmetric models (models C, F, F′)
GLW Ginzburg–Landau–Wilson
Hindex Static functional for specific densities
k Wave vector
κ Wave number scale
κT Thermal conductivity (at zero mass current in mixtures)
KC Kinetic coefficient
L Kinetic coefficient; cross term
λ Kinetic coefficient of a conserved density
� Flow parameter
µ kinetic coefficient, mass transport
m, m Conserved secondary densities
n Number of components
OP Order parameter
�φ n-component real OP
�ϕ n/2-component complex OP
ψ Scalar complex OP
r Mass coefficient in the GLW static functional
Rindex

index Experimental, universal and/or effective amplitude
RC Renormalization constant
RG Renormalization group
SVP Saturated vapour pressure
τ Mass coefficient in the extended static functional (50)
�index Noise
t Reduced temperature ((T − Tc)/Tc) or time
u Static fourth-order coupling
w Time ratio; in most cases w = �/λ

ω Frequency
ωc Characteristic frequency
�d Surface of d-dimensional unit sphere
ξ Correlation length (37)
x kξ

y ω/ωc

Zindex Renormalization
zindex Dynamic critical exponent
ζindex ζ -function (162); its fixed-point value gives exponents
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[233] Shirane G, Böni P and Martinez J L 1987 Phys. Rev. B 36 881
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